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Preface

Greetings,

Matrix Analysis: A Quick Guide to is compiled based on my MA353: Ma-
trix Analysis notes with professor Leo Livshits. The sections are based on a
number of resources: Linear Algebra Done Right by Axler, A Second Course
in Linear Algebra by Horn and Garcia, Matrices and Linear Transformations
by Cullen, Matrices: Methods and Applications by Barnett, Problems and The-
orems in Linear Algebra by Prasolov, Matrix Operations by Richard Bronson,
and professor Leo Livshits’ own textbook (in the making). Prerequisites: some
prior exposure to a first course in linear algebra.

I will decide how much narrative I should put into the text as text is devel-
oped over the semester. I’m thinking that I will only add detailed explanations
wherever I find fit or necessary for my own studies. I will most likely keep the
text as condensed as I can.

All of the problems in this text are created by professor Leo Livshits.

Enjoy!
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Chapter 1

List of Special
Matrices/Operators &
Their Properties

1. Normal: L is normal ⇐⇒ L∗L = LL∗.

2. Hermitian/Self-adjoint: H = H†. A Hermitian matrix is matrix that
is equal to its own conjugate transpose:

H is Hermitian ⇐⇒ Hij = H̄ji

Properties 1.0.1.

(a) H is Hermitian ⇐⇒ 〈w,Hv〉 = 〈Hw, v〉, where 〈, 〉 denotes the inner
product.

(b) H is Hermitian ⇐⇒ 〈v,Hv〉 ∈ R.

(c) H is Hermitian ⇐⇒ it is unitarily diagonalizable with real eigen-
values.

(d) H is Hermitian ⇐⇒ H is normal and σC(H) ⊂ R.

Unitary: U∗U = UU∗ = I = U†U = UU†. The real analogue of a
unitary matrix is an orthogonal matrix. The following list contain the
properties of U :

(a) U is normal and σC(U) ⊆ Π = {eiθ|θ∈R}.
(b) U preserves the inner product (is an isometry)

〈Ux,Uy〉 = 〈x, y〉.

(c) U is normal: it commutes with U∗ = U†.

7



8CHAPTER 1. LIST OF SPECIALMATRICES/OPERATORS & THEIR PROPERTIES

(d) U is diagonalizable:

U = V DV ∗,

where D is diagonal and unitary, and V is unitary.

(e) |det(U)| = 1 (hence the real analogue to U is an orthogonal matrix)

(f) Its eigenspaces are orthogonal.

(g) U can be written as

U = eiH ,

where H is a Hermitian matrix.

(h) Any square matrix with unit Euclidean norm is the average of two
unitary matrices.

3. Idempotent: M idempotent ⇐⇒ M2 = M .

(a) Singularity: its number of independent rows (and columns) is less
than its number of rows (and columns).

(b) When an idempotent matrix is subtracted from the identity matrix,
the result is also idempotent.

“Proof”.

[I −M ][I −M ] = I −M −M +M2 = I −M −M +M = I −M.

(c) M is idempotent ⇐⇒ ∀n ∈ N, An = A.

(d) Eigenvalues: an idempotent matrix is always diagonalizable and its
eigenvalues are either 0 or 1. (think “projection”)

(e) Trace: the trace of an idempotent matrix equals the rank of the
matrix and thus is always an integer. So

tr(A) = dim(ImA).

4. Nilpotent: a nilpotent matrix is a square matrix N such that

Nk = 0

for some positive integer k. The smallest such k is sometimes called the
index of N .

The following statements are equivalent:

(a) N is nilpotent.



9

(b) The minimal polynomial for N is xk for some positive integer k ≤ n.

(c) The characteristic polynomial for N is xn.

(d) The only complex eigenvalue for N is 0.

(e) trNk = 0 for all k > 0.

Properties 1.0.2.

(a) The degree of an n× n nilpotent matrix is always less than or equal
to n.

(b) detN = tr(N) = 0.

(c) Nilpotent matrices are not invertible.

(d) The only nilpotent diagonalizable matrix is the zero matrix.
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Chapter 2

List of Operations

1. Conjugate transpose is what its name suggests.

2. Classical adjoint/Adjugate/adjunct of a square matrix is the trans-
pose of its cofactor matrix.

11
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Chapter 3

Complex Numbers

3.1 A different point of view

We often think of complex numbers as

a+ ib

where a, b ∈ R and i =
√
−1. While there is nothing “bad” about this way of

thinking - in fact thinking of complex numbers as a+ib allows us to very quickly
and intuitively do arithmetics operations on them - a “matrix representation”
of complex numbers can give us some insights on “what we actually do” when
we perform complex arithmetics.

Let us think of (
a −b
b a

)
as a different representation of the same object - the same complex number
“a + ib.” Note that it does not make sense to say the matrix representation
equals the complex number itself. But we shall see that a lot of the properties
of complex numbers are carried into this matrix representation under interesting
matricial properties. (

a −b
b a

)
∼ a+ ib

First, let us break the matrix down:

a+ ib = a× 1 + i× b ∼
(
a −b
b a

)
= a

(
1 0
0 1

)
+ b

(
0 −1
1 0

)
= aI + bI.

13



14 CHAPTER 3. COMPLEX NUMBERS

Right away, we can make some “mental connections” between the representa-
tions:

I ∼ 1

I ∼ i.

Now, we know that complex number multiplications commute:

(a+ ib)(c+ id) = (c+ id)(a+ ib).

Matrix multiplications are not commutative. So, we might wonder whether
commutativity holds under the this new representation of complex numbers.
Well, the answer is yes. We can readily verify that

(aI + bI)(cI + bI) = (cI + bI)(aI + bI).

How about additions? Let’s check:

(a+ ib) + (c+ id) = (a+ c) + i(b+ d) ∼
(
a+ c −(b+ d)

(b+ d) a+ c

)
=

(
a −b
b a

)
+

(
c −d
d c

)
.

Ah! Additions work. So, the new representation of complex numbers seems to
be working flawlessly. However, we have yet to gain any interesting insights into
the connections between the representations. To do that, we have to look into
changing the form of the matrix. First, let’s see what conjugation does:

(a+ ib)∗ = a− ib ∼
(
a b
−b a

)
=

(
a −b
b a

)>
Ah, so conjugation to a complex number in the traditional representation is the
same as transposition in the matrix representations. What about the amplitude
square? Let us call

M =

(
a −b
b a

)
.

We have

(a+ ib)(a− ib) ∼
(
a −b
b a

)(
a b
−b a

)
= MM> = (a2 + b2)I = det(M)I

Interesting. But observe that if det(M) 6= 0

1

det(M)
MM> = I.

This tells us that

M> = M−1,
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where M−1 is the inverse of M , and, not surprisingly, it corresponds to the
reciprocal to the complex number a+ ib. We can readily show that

M−1 ∼ (a+ ib)−1 =
1

a2 + b2
(a− ib).

Remember that we can also think of a complex number as a column vector:

c+ id ∼
(
c
d

)
.

Let us look back at complex number multiplication under matrix representation:

(a+ ib)(c+ id) = (ac− bd) + i(bc+ ad) ∼
(
a −b
b a

)(
c
d

)
=

(
ac− bd
bc+ ad

)
.

Multiplication actually works in this “mixed” way of representing complex num-
bers as well. Now, observe that what we just did was performing a linear trans-
formation on a vector in R2. It is always interesting to look at the geometrical
interpretation of this transformation. To do this, let us call N the “normalized”
version of M :

N =
1√

a2 + b2

(
a −b
b a

)
.

We immediately recognize that N is an orthogonal matrix. This means N is an
orthogonal transformation (length preserving). Now, it is reasonable to define

cos θ =
a√

a2 + b2

sin θ =
b√

a2 + b2
.

We can write N as

N =
(
cos θ − sin θ sin θ cos θ

)
,

which is a physicists’ favorite matrix: the rotation by θ. So, let us write M in
terms of N :

M =

(
a −b
b a

)
=
√
a2 + b2N =

√
a2 + b2

(
cos θ − sin θ
sin θ cos θ

)
.

We can interpret M as a rotation by θ, followed by a scaling by
√

(a2 +b2). But

what
√
a2 + b2 exactly is just the “length” or the “amplitude” of the complex

number a+ ib, if we think of it as an arrow in a plane.
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3.2 Relevant properties and definitions

1. The modulus of z = a + ib is the “amplitude” of z, denoted by |z| =√
a2 + b2 = zz̄.

2. The modulus is multiplicative, i.e.

|wz| = |w||z|.

3. Triangle inequality:

|z + w| ≤ |z|+ |w|.

We can readily show this geometrically, or algebraically.

4. The argument of z = a+ ib is θ, where

θ =


tan−1

(
b
a

)
, if a > 0

π
2 + k2π, k ∈ R if a = 0, b > 0

−π2 + k2π, k ∈ R if a = 0, b < 0

Undefined if a = b = 0.

5. The conjugate of a+ib is a−ib. Conjugation is additive and multiplicative,
i.e.

¯z + w = z̄ + w̄

w̄z = w̄z̄.

Note that we can also show the multiplicative property with the matrix
representation as well:

w̄z ∼ (WZ)> = Z>W> ∼ z̄w̄ = w̄z̄.

6. Euler’s identity, generalized to de Moivre’s formula:

zn = rneinθ.



Chapter 4

Vector Spaces & Linear
Functions

4.1 Review of Linear Spaces and Subspaces

Properties 4.1.1. of linear spaces:

1. Commutativity and associativity of addition

2. Existence of an additively neutral element (null element). Zero multiples
of elements give the null element: 0 · V = 0

3. Every element has an (unique) additively antipodal element

4. Scalar multiplication distributes over addition

5. Multiplicative identity:

6. ab · V = a · (bV )

7. (a+ b)V = aV + bV

W is a subspace of V if

1. S ⊆ V

2. S is non-empty

3. S is closed under addition and scalar multiplication

Properties 4.1.2. that are interesting/important/maybe-not-so-obvious:

1. If S is a subspace of V and S 6= V then S is a proper subspace of V .

2. If X in a subspace of Y and Y is a subspace of Z, then X is a subspace
of W .

3. Non-trivial linear (non-singleton) spaces are infinite.

17
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4.2 Review of Linear Maps

Consider linear spaces V and W and elements v ∈ V and w ∈ W and scalars
α, β ∈ R, a function F : V →W is a linear map if

F [αv + βw] = αF [v] + βF [w].

Properties 4.2.1.

1. F [0V ] = 0W

2. G[w] = (α · F )[w] = α · F [w]

3. Given F : V → W and G : V → W , H[v] = F [v] + G[v] = (F + G)[v] is
call the sum of the functions F and G.

4. Linear combinations of linear maps are linear.

5. Compositions of linear maps are linear.

6. Compositions distributes over linear combinations of linear maps.

7. Inverses of linear functions (if they exist) are linear.

8. Inverse of a bijective linear function is a bijective linear function

4.3 Review of Kernels and Images

Definition 4.3.1. Let F : V →W be given. The kernel of F is defined as

ker(F ) = {v ∈ V |F [v] = 0W }.

Properties 4.3.1. Let F : V → W a linear map be given. Also, consider a
linear map G such that F ◦G is defined

1. F is null ⇐⇒ ker(F ) = V ⇐⇒ Im(F ) = 0W

2. ker(F ) is a subspace of V

3. Im(F ) is a subspace of W

4. F is injective ⇐⇒ ker(F ) = 0V

5. ker(F ) ⊆ ker(F ◦G).

6. F injective =⇒ ker(F ) = ker(F ◦G)

Definition 4.3.2. Let F : V →W be given. The image of F is defined as

Im(F ) = {w ∈W |∃v ∈ V, F [v] = w}.
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4.4 Atrices

Definition 4.4.1. Atrix functions: Let V1, . . . , Vm ∈ V be given. Consider
f : Rm → V be defined by

f


a1

a2

...
am

 =

m∑
i=1

aiVi.

We denote f by (
V1 V2 . . . Vm

)
.

We refer to the Vi’s as the columns of f , even though there doesn’t have to
be any columns. Basically, f is simply a function that takes in an ordered
list of coefficients and returns a linear combination of Vi with the respective
coefficients. A matrix is a special atrix. Not every atrix is a matrix.

Properties 4.4.1. of atrices

1. The Vi’s - the columns of an atrix - are the images of the standard basis
tuples.

2. ej ∈ ker(V1 . . . Vm) ⇐⇒ Vj = 0V , where ej denotes a standard basis
tuple with a 1 at the jth position. To put in words, a kernel of an atrix
contains a standard basis if and only if one of its columns in a null element.

3. Im(f) ≡ Im(V1 . . . Vm) = span(V1 . . . Vm)

4. B is a null atrix ⇐⇒ ker(B) = Rm ⇐⇒ Im(B) = 0V ⇐⇒ Vj =
0V ∀j = 1, 2, . . . ,m.

5. f is a linear function Rm → V ⇐⇒ f is an atrix function Rm → V .

6. An atrix A is bijective/invertible, then its inverse A−1 is a linear function,
but is an atrix only if A is a matrix.

7. Linear combinations of atrices are atrices:

α ·
(
V1 · · · Vm

)
+ β ·

(
W1 . . . Wm

)
=
(
αV1 + βW1 . . . αVm + βWm

)
8. Compositions of two atrices are NOT defined unless the atrix going first

is a matrix. Consider F : Rm →W and G : Rn → T . F ◦G is only defined
if T = Rm. This make G an n×m matrix. It follows that the atrix F ◦G
has the form (

f(g1) f(g2) . . . f(gm)
)
.
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9. Consider F : Rm → V and G : Rk → V . Im(F ) ⊆ Im(G) ⇐⇒ F = G◦C,
with C ∈ Mk×m, i.e. C is an k ×m matrix.

10. Consider an atrix A : Rm → V . A = (V1 . . . Vm). A is NOT injective.
⇐⇒ ∃ a non-trivial linear combination of the columns of A that gives 0V
⇐⇒ A = [0v] or ∃j|Vj is linear combination of other columns of A
⇐⇒ The first column of A is 0V or ∃j|Vj is a linear combination some of
Vi, i < j.

11. If atrix A : R→ V has a single column then it is injective if the column is
not 0V .

Properties 4.4.2. of elementary column operations for atrices. Elementary
operations on the columns of F can be expressed as a composition of F and an
appropriate elementary matrix E, F ◦ E.

1. Swapping ith and jth columns: F ◦ E[i]↔[j].

2. Scaling the jth column by α: F ◦ Eα·[j].

3. Adjust the jth column by adding to it α× ith column: F ◦ E[i]
+←α·[j].

4. Elementary column operations do not change the ’jectivity nor image of
F .

5. If a column of F is a linear combination of some of the other columns then
elementary column operations can turn it into 0V .

6. Removing/Inserting null columns or columns that are linear combinations
of other columns does not change the image of F .

7. Given atrix A, it is possible to eliminate (or not) columns of A to end up
with an atrix B with Im(B) = Im(A).

8. If B is obtained from insertion of columns into atrix A, then Im(B) =
Im(A) ⇐⇒ the insert columns ∈ Im(A).

9. Inserting columns to a surjective A does not destroy surjectivity of A. (A
is already having extra or just enough columns)

10. A surjective ⇐⇒ A is obtained by inserting columns (or not) into an in-
vertible atrix ⇐⇒ deleting some columns of A (or not) gives an invertible
matrix.

11. If A is injective, then column deletion does not destroy injectivity. (A is
already “lacking” or having just enough columns)

12. The new atrix obtained from inserting columns from Im(A) into A is
injective ⇐⇒ A is injective.
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4.5 Linear Independence, Span, and Bases

4.5.1 Linear Independence

X1 . . . Xm are linearly independent
⇐⇒ F = [X1 . . . Xm] injective
⇐⇒

∑
aiXi = 0 ⇐⇒ ai = 0∀i

⇐⇒ 0V /∈ {Xi} and none are linear combinations of some of the others.
⇐⇒ X1 6= 0V and Xj is not a linear combination of any of Xi’s for i < j.

Properties 4.5.1.

1. The singleton list is linearly independent if its entry is not the null element

2. Sublists of a linearly independent list are linearly independent

3. List operations cannot create/destroy linearly independence.

4. If a linear map L : X →W injective, then X1 . . . Xm linearly independent
⇐⇒ L(X1) . . . L(Xm) linearly independent.

4.5.2 Span

Properties 4.5.2.

1. Spans are subspaces. span(X1 . . . Xm), Xj ∈ V is a subspace of V .

2. span(X1 . . . Xj) ⊆ span(X1 . . . Xk) if j ≤ k.

3. Adding elements to a list that spans V produces a list that spans V .

4. The following list operations do not change the span of V : removing the
null/linearly dependent element, inserting a linearly dependent element,
scaling element(s), adding (multiples) of an element to another element.

5. It is possible to reduce a list that spans to a list that spans AND have
linearly independent elements.

6. Consider A : V → W . If Xi span W then A(Xi) span Im(A). i =
1, 2, . . . ,m.

7. If A : V → W invertible, then Xi span V ⇐⇒ A(Xi) span W , i =
1, 2, . . . ,m.

4.5.3 Bases

Properties 4.5.3.

1. A list is a basis of V if the elements are linearly independent and they
span V .

2. A singleton linear space has no basis.
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3. Re-ordering the elements of a basis gives another basis.

4. {X1 . . . Xm} is a basis of V if (X1 . . . Xm) is injective AND Im(X1 . . . Xm) =
V , i.e. (X1 . . . Xm) invertible.

5. If {Xi} is a basis of V and {Yi} is a list of elements in W , then there exists
a unique linear function L : V →W satisfying

L[Xi] = Yi

6. If A : V → W bijective, then {Vi} forms a basis of V and {A(Xi)} forms
a basis of W .

7. Elementary operations on bases give bases.

4.6 Linear Bijections and Isomorphisms

Definition 4.6.1. Let linear spaces V,W be given. V is isomorphic to W if
∃F : V →W bijective. We say V ∼W .

Properties 4.6.1.

1. A non-zero scalar multiple of an isomorphism is an isomorphism.

2. A composition of isomorphism is an isomorphism.

3. “Isomorphism” behaves like an equivalence relation:

(a) Reflexivity: V ∼ V .

(b) Symmetry: if V ∼W then W ∼ V .

(c) Transitivity: if V ∼W and W ∼ Z then V ∼ Z.

4. Consider F : V →W an isomorphism.

(a) Isomorphisms preserve linear independence. Vi’s are linearly inde-
pendent in V ⇐⇒ F (Vi)’s are linearly independent in W .

(b) isomorphisms preserve spanning. Vi’s span V ⇐⇒ F (Vi)’s span W .

(c) Isomorphisms preserve bases. {Vi} is a basis of V ⇐⇒ F{(Vi)} is a
basis of W .

5. If V ∼W then dim(V ) = dim(W ) (finite or infinite).

6. If a linear map A : V →W is given and A(Xi)’s are linearly independent,
then Ai’s are linearly independent.

7. If a linear map A : V → W is injective and {Xi} is a basis of V then
{A(Xi)} is a basis of Im(A)
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4.7 Finite-Dimensional Linear Spaces

4.7.1 Dimension

Properties 4.7.1.

1. Rm ∼ Rn ⇐⇒ m = n.

2. Isomorphisms F : Rn → V are bijective atrices.

3. Isomorphisms G : W → Rm are inverses of bijective atrices.

4. Consider a non-singleton linear space V

(a) V has a basis with n elements.

(b) V ∼ Rn.

(c) V ∼W , where W is any linear space with a basis of n elements.

5. If V is a linear space with a basis with n elements, then any basis of V
has n elements.

6. Linear space V ∼W where W is n-dimensional if V is n-dimensional.

7. For a non-singleton linear space V , V ∼ Rn ⇐⇒ dim(V ) = n.

8. V ∼W ⇐⇒ dim(V ) = dim(W ).

9. If W is a subspace of V , then dim(W ) ≤ dim(V ). Equality holds when
W = V .

4.7.2 Rank-Nullity Theorem

Let finite-dimensional linear space V and linear map F : V → W be given.
Then Im(F ) is finite-dimensional and

dim(Im(F )) + dim(ker(F )) = dim(V )

A stronger statement: If a linear map F : V →W has finite rank and finite
nullity ⇐⇒ V is finite-dimensional, then

Im(F ) + ker(F ) = dim(V ).

4.8 Infinite-Dimensional Spaces

Consider a non-singleton linear space V . The following statements are equiva-
lent:

1. V is infinite-dimensional.

2. Every linearly independent list in V can be enlarged to a strictly longer
linearly independent set in V .
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3. Every linearly independent list in V can be enlarged to an arbitrarily long
(finite) linearly independent set in V .

4. There are arbitrarily long (finite) linearly independent lists in V .

5. There are linearly independent lists in V of any (finite) length.

6. No list of finitely many elements of V spans V .
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Sums of Subspaces &
Products of vector spaces

5.1 Direct Sums

Definition 5.1.1. Let Uj , j = 1, 2, . . .m are subspaces of V .
∑m

1 Uj is a direct
sum if each u ∈

∑
Uj can be written in only one way as u =

∑m
1 uj . The direct

sum
∑m
i Uj is denoted as U1 ⊕ · · · ⊕ Um.

Properties 5.1.1.

1. Condition for direct sum: If all Uj are subspaces of V , then
∑m

1 Uj is a
direct sum ⇐⇒ the only way to write 0 as

∑m
1 uj , where uj ∈ Uj is to

take uj = 0 for all j.

2. If U,W are subspaces of V and U
⋂
W = {0} then U +W is a direct sum.

3. Let Uj be finite-dimensional and are subspaces of V .

U1 ⊕ · · · ⊕ Um ⇐⇒ dim(U1 + · · ·+ Um) =

m∑
1

dim(Uj)

4. Let U1, . . . , Um be subspaces of V . Define a linear map Γ : U1×· · ·×Um →
U1 + · · ·+ Um by:

Γ(u1, . . . , um) =

m∑
1

uj .

U1 + · · ·+ Um is a direct sum ⇐⇒ Γ is injective.

Subspace addition is associative.

Subspace addition is commutative.
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5.2 Products and Direct Sums

Here is a connection between direct sums and products of vector spaces. Suppose
Z1 and Z2 are subspaces of W and z1 ∈ Z1, z2 ∈ Z2. Consider the function

z : Z1 × Z2
linear−→ Z1 ⊕ Z2 ≺W defined by

z

(
z1

z2

)
∆
= z1 + z2. (5.1)

We can show that

1. z is a linear function.

2. z is an isomorphism, i.e., Z1 × Z2 ∼ Z1 ⊕ Z2.

5.3 Products of Vector Spaces

Definition 5.3.1. Product of vectors spaces

V1 × · · · × Vm = {(v1, . . . , vm) : vj ∈ Vj , j = 1, 2, . . . ,m}.

Definition 5.3.2. Addition on V1 × · · · × Vm:

(u1, . . . , um) + (v1, . . . , vm) = (u1 + v1, . . . , vm + um).

Definition 5.3.3. Scalar multiplication on V1 × · · · × Vm:

λ(v1, . . . , vm) = (λv1, . . . , λvm).

Properties 5.3.1.

1. Product of vectors spaces is a vector space.

Vj are vectors spaces over F =⇒ V1 × · · · × Vm is a vector space over F .

2. Dimension of a product is the sum of dimensions:

dim(V1 × · · · × Vm) =

m∑
1

dim(Vj)

3. Vector space products are NOT commutative:

W × V 6= V ×W.

However,

V ×W ∼W × V.

4. Vector space products are NOT associative:

V × (W × Z) 6= (V ×W )× Z
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5.4 Rank-Nullity Theorem

Suppose Z1 and Z2 are subspaces of a finite-dimensional vector space W . Con-
sider z1 ∈ Z1, z2 ∈ Z2, and a function φ : Z1 × Z2 → Z1 + Z2 ≺ W defined
by

φ

(
z1

z2

)
= z1 + z2.

First, φ is a linear function, as it satisfies the linearity condition:

φ

(
α

(
z1

z2

)
+ β

(
z′1
z′2

))
= αφ

(
z1

z2

)
+ βφβ

(
z′1
z′2

)
.

By rank-nullity theorem,

dim(Z1 × Z2) = dim(Z1 + Z2) + dim(ker(φ)).

But this is equivalent to

dim(Z1) + dim(Z2) = dim(Z1 + Z2) + dim(ker(φ))

The kernel of φ is:

ker(φ) =

{(
v
−v

) ∣∣∣∣v ∈ z ∈ Z1, z ∈ Z2

}
=

{(
v
−v

) ∣∣∣∣v ∈ z ∈ Z1 ∩ Z2

}
We can readily verify that Z1∩Z2 is a subspace of W . With this, dim(ker(φ)) =
dim(Z1 ∩ Z2). So we end up with

dim(Z1 + Z2) = dim(Z1) + dim(Z2)− dim(Z1 ∩ Z2).

Properties 5.4.1.

1. When Z1 ∩ Z2 is trivial, then Z1 + Z2 is direct.

2. When dim(ker(φ)) = 0, φ is injective. But φ is also surjective by definition,
this implies φ is a bijection, in which case

Z1 ⊕ Z2 ∼ Z1 + Z2.

5.5 Nullspaces & Ranges of Operator Powers

1. Sequence of increasing null spaces: Suppose T ∈ L(V ), i.e., T is some
linear function mapping V → V , then

{0} = ker(T 0) ⊂ ker(T 1) ⊂ ker(T 2) ⊂ · · · ⊂ ker(T k) ⊂ ker(T k+1) ⊂ . . . .

Proof Outline. Let k be a nonnegative integer and v ∈ ker(T k). Then
T kv = 0, so T k+1v = T (T kv) = T (0) = 0, so v ∈ kerT k+1. So ker(T k) ⊂
ker(T k+1).
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2. Equality in the sequence of null spaces: Suppose m is a nonnegative integer
such that ker(Tm) = ker(Tm+1), then

ker(Tm) = ker(Tm+1) = ker(Tm+2) = . . . .

Proof Outline. We want to show

ker(Tm+k) = (Tm+k+1).

We know that kerTm+k ⊂ kerTm+k+1. Suppose v ∈ kerTm+k+1, then

Tm+1(T kv) = Tm+k+1v = 0.

So

T kv ∈ kerTm+1 = kerTm.

So

0 = Tm(T kv) = Tm+kv,

i.e., v ∈ kerTm+k. So kerTm+k+1 ⊂ kerTm+k. This completes the
proof.

3. Null spaces stop growing: If n = dim(V ), then

ker(Tn) = ker(Tn+1) = ker(Tn+2) = . . . .

Proof Outline. To show:

kerTn = kerTn+1.

Suppose this is not true. Then the dimension of the kernel has to increase
by at least 1 every step until n + 1. Thus dim kerTn+1 ≥ n + 1 > n =
dim(V ). This is a contradiction.

4. V is the direct sum of ker(T dim(V )) and Im(T dim(V )): If n = dim(V ), then

V = ker(Tn)⊕ Im(Tn).

Proof Outline. To show:

kerTn ∩ ImTn = {0}.

Suppose v ∈ kerTn ∩ ImTn. Then Tnv = 0 and ∃u ∈ V such that
v = Tnu. So

Tnv = T 2nu = 0.

So

Tnu = 0.

But this means v = 0.

5. IT IS NOT TRUE THAT V = ker(T )⊕ Im(T ) in general.
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5.6 Generalized Eigenvectors and Eigenspaces

Definition 5.6.1. Suppose T ∈ L(V ) and Λ is an eigenvalue of T . A vector
v ∈ V is called a generalized eigenvector of T corresponding to λ if v 6= 0
and

(T − λI)jv = 0

for some positive integer j.

Definition 5.6.2. Generalized Eigenspace: Suppose T ∈ L(V ) and λ ∈ F.
The generalized eigenspace of T corresponding to λ, denoted G(λ, T ), is
defined to be the set of all generalized eigenvectors of T corresponding to λ,
along with the 0 vector.

Properties 5.6.1. 1. Suppose T ∈ L(V ) and λ ∈ F. Then

G(λ, T ) = ker(T − λI)dim(V ).

Proof Outline. Suppose v ∈ ker(TλI)dim(V ). Then v ∈ G(λ, T ). So,
ker(T − λI)dimV ⊂ G(λ, T ). Next, suppose v ∈ G(λ, T ). Then these
is a positive integer j such that

v in ker(T − λI)j .

But if this is true, then

v in ker(T − λI)dimV ,

since ker(T − λI)dimV is the largest possible kernel, in a sense.

2. Linearly independent generalized eigenvectors: Let T ∈ L(V ). Suppose
λ1, . . . , λm are distinct eigenvalues of T and v1, . . . , vm are corresponding
generalized eigenvectors. Then v1, . . . , vm is linearly independent.

5.7 Nilpotent Operators

Definition 5.7.1. An operator is called nilpotent if some power of it equals
0.

Properties 5.7.1.

Nilpotent operator raised to dimension of domain is 0: Suppose N ∈ L(V ) is
nilpotent. Then

Ndim(V ) = 0.
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Matrix of a nilpotent operator: Suppose N is a nilpotent operator on V . Then
there is a basis of V with espect to which the matrix of N has the form0 ∗

. . .

0 0

 ;

here all entries on and below the diagonal are 0’s.
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Idempotents & Resolutions
of Identity

Definition 6.0.1. An Operator is a linear function from a vector space to
itself:

E : V
linear−→ V.

Definition 6.0.2. Idempotents: are operators with the property E2 = E , i.e.,

E ◦ E = E .

Recall that if V = W ⊕ Z, then there exists an idempotent E ∈ L(V) such
that

W = Im(E)

Z = ker(E).

In fact, if V = W ⊕ Z then there exists at least two idempotents E ,
W = Im(E),Z = ker(E) and F , W = ker(F), Z = Im(F).

A natural question to ask now is whether every idempotent E ∈ L(V) can
be generated this way. The answer is Yes, but to answer to this, we need to
show existence and uniqueness.

Theorem 6.0.1. If E ◦ E = E2 = E , then V = Im(E)⊕ ker(E).

Proof.

1. Show that Im(E) + ker(E) = V.

Let v ∈ V be given, then v = E(v) + v − E(v). Now, observe that

E(v − E(v)) = E(v)− E2(v) = E(v)− E(v) = 0.

Therefore, E(v) ∈ Im(E) and (v−E(v)) ∈ ker(E). So, Im(E)+ker(E) = V.
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2. Show that Im(E)⊕ ker(E) = V.

We want to show that Im(E)
⋂

ker(E) = {0}. So, let v ∈ Im(E)
⋂

ker(E)
be given. Then v ∈ Im(E), which implies E(E(x)) = E(x) = v = 0 for
some x. Hence, the intersection is the trivial subspace.

Properties 6.0.1. A by product of this previous item is this fact. For any
x ∈ V

E(E(x)) = E(x) ⇐⇒ E = E2, (6.1)

i.e., E is an idempotent exactly when it acts as an identity function on its own
image.

Theorem 6.0.2. If E2 = E and G2 = G in L(V) and

Im(G) = Im(E)

ker(G) = ker(E)

then

E = G.

Proof. Let W = Im(E) = Im(G) and Z = ker(E) = ker(G). Note that W⊕Z =
V. Consider v ∈ V. Then

E(v) = E(w + z) = E(w) + E(z) = E(w) + 0 = E(w) = w,

where v = z + w is unique by directness. We can do the same thing with G,
and get G = E.

Theorem 6.0.3. For each decomposition V = W ⊕ Z, there exists a unique
idempotent whose image is W and kernel is Z.

Now, notice that for v = w + z, we have v = w + z = E(w) + F(z) =
E(v) + F(v) = Id(v). So we have a little theorem:

Theorem 6.0.4. If E and F are idempotents such that Im(E) = ker(F) and
ker(E) = Im(F) then

E + F = Id.
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As a result we get another two results:

1. If E2 = E ∈ L(V) then (Id− E)2 = (Id− E) also an idempotent.

2.

Im(E) = ker(Id− E)

ker(E) = Im(Id− E)

We say that in this case idempotents come in pairs. So, to informally
summarize, if V = W ⊕ Z, then there is a pair of idempotents. More con-
cretely, if V = W ⊕ Z, then there exist unique idempotents E and F such that
E + F = Id and W = Im(E) = ker(F) and Z = ker(E) = Im(F). The converse
is also true. If there exist idempotents E and F such that if E + F = Id and
W = Im(E) = ker(F) and Z = ker(E) = Im(F) then V = W ⊕ Z.

All is good, but what if the vector space V is decomposed into three pieces
as V = W ⊕ Z ⊕ U? Well, we simply repeat what we have done before to
V = W⊕ (Z⊕U). We know that there exist a unique EW such that E2

W = EW
and that Im(EW) = W and ker(EW) = U⊕Z. Similarly, there exist a unique EU
such that E2

U = EU and that Im(EU) = V and ker(EU) = W⊕Z; and there exist
a unique EW such that E2

W = EW and that Im(EW) = W and ker(EW) = U⊕Z.

There are a few observations we can make:

1. Let v ∈ V be given, then (EW+EU+EZ)(v) = (EW+EU+EZ)(w+u+z) =
w + u+ z = v. So EW + EU + EZ = Id.

2. EW ◦ EZ(v) = EW(z) = 0V. So, in general, Ei ◦ Ej = O for i 6= j and Ei if
i = j.

What about the converse? Given the linear functions such that E2
j = E such

that Im(Ei) = ker(Ej +Ek), then does V = Z⊕W +U hold? The answer is yes!
We can restate this for rigorously:

Theorem 6.0.5. Suppose E1, E2, E3 are idempotents such that E1 +E2 +E3 = Id
and Ei ◦ Ej = δji Ei then

Im(E1)⊕ Im(E2)⊕ Im(E3) = V

and

ker(E1) = Im(E2)⊕ Im(E3),

etc.

The following two statements are equivalent:

1. W ⊕ Z⊕U = V.
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2. There are idempotents E1, E2, E3 ∈ L(V) such that

Im(E1) = W, Im(E2) = Z, Im(E3) = U

and

E1 + E2 + E3 = Id

Ej ◦ Ei = δji Ei

Proof. • The forward direction has been shown.

• We will show how (2) implies (1). We first show that Im(E1) +
Im(E2) + Im(E3) = V, then

V 3 v = Id(v) = (E1 + E2 + E3)(v) = E1(v) + E2(v) + E3(v) ∈ Im(E1) + Im(E2) + Im(E3).

It is straightforward to show that V = Im(E1) + Im(E2) + Im(E3). To
show directness, suppose that x1 + x2 + x3 = 0, xi ∈ Im(Ei). We
want to show that xi = 0 for any i ∈ {1, 2, 3}. By construction, we
have that

E1(x1) + E2(x2) + E3(x3) = 0,

so

E1 (E1(x1) + E2(x2) + E3(x3)) = E1(0) = 0.

But this implies that

E1(E1(x1)) = E1(x1) = x1 = 0.

Similarly, we get xj = 0 for all j. By one of the equivalent statements
about directness, we get that Im(E1)⊕ Im(E2)⊕ Im(E3) = V.

We can also (of course) look at the kernel. Observe that E1(E2(v)) = 0. So
Im(E2) ⊆ ker(E1). Similarly, Im(E3) ⊆ ker(E1). So, Im(E3) + Im(E2) ⊆ ker(E1).
But we also know that the images of E1 and E2 intersect trivially, so this sum
is direct. So we have Im(E3) ⊕ Im(E2) ⊆ ker(E1). But we also know that V =
Im(E1)⊕ ker(E1) = Im(E1)⊕ Im(E2)⊕ Im(E3), so

Im(E2)⊕ Im(E3) = ker(E1)

as desired.

So, just a recap of what we have done so far, the following statements are
equivalent for A ∈ L(V):

1. A2 = A.
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2. A(x) = x for x ∈ Im(A).

3. (Id−A)2 = (Id−A).

4. Im(A) = ker(Id−A).

5. Im(Id−A) = ker(A).



36 CHAPTER 6. IDEMPOTENTS & RESOLUTIONS OF IDENTITY



Chapter 7

Block-representations of
operators

7.1 Coordinatization

Consider a finite-dimensional linear space V with basis {Vi}, i = 1, 2, . . . ,m.
An element Ṽ in V can be expressed in exactly one way:

Ṽ =

m∑
i=1

aiVi,

where {ai} is unique. We call {ai} the coordinate tuple of Ṽ and ai’s the
coordinates.

Properties 7.1.1.

1. Inverse of a bijective atrix outputs the coordinates. Suppose A = [Vi].
Then

Ṽ =

m∑
i=1

aiVi ⇐⇒ A−1(Z) =
(
a1 . . . am

)>
7.2 Matricial representation of linear functions

7.2.1 In Cartesian products

Let us start with a Cartesian product of two vector spaces and a linear function

L mapping this Cartesian product to itself L : V ×W
linear−→ V ×W, where a

typical element in V ×W is given by(
v
w

)
=

(
v
0

)
+

(
0
w

)
.
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Formally, we can represent the linear function L as a block-matrix function(
F11 F12

F21 F22

)(
v
w

)
∆
=

(
F11(v) + F12(w)
F21(v) + F22(w)

)
.

So we have

F11 : V
linear−→ V

F12 : W
linear−→ V

F21 : V
linear−→ W

F22 : W
linear−→ W.

It can be illuminating if we show what the linear functions Fij does in a block-
matrix form:

V W
V

� �

W

� � .

Now, since Fij are all linear, the block-matrix function(
F11 F12

F21 F22

)
: V ×W→ V ×W

is linear as well.

A natural question to ask would be: “Can every linear function be repre-
sented this way?” The answer is Yes, and we shall see how this is done.

Notice that

L
(
v
0

)
=

(
F11 F12

F21 F22

)(
v
0

)
=

(
F11(v)
F21(v)

)
. (7.1)

In particular,

ΠV ◦ L
(
v
0

)
= F11(v), (7.2)

where ΠV : V ×W → V is a coordinate projection from V ×W onto V. In
fact, we can also defined the linear function γV that is a coordinate injection

from V into V ×W. So, given L : V ×W
linear−→ V ×W, we let:

F11 := ΠV ◦ L ◦ γV (7.3)

F12 := ΠV ◦ L ◦ γW (7.4)

F21 := ΠW ◦ L ◦ γV (7.5)

F22 := ΠW ◦ L ◦ γW. (7.6)
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Now, we can easily check that L is indeed(
F11 F12

F21 F22

)
. (7.7)

We do this by considering
(
v w

)> ∈ V ×W. We know that

F11(v) + F12(w) = Π1 ◦ L
(
v
0

)
+ Π1 ◦ L

(
0
w

)
= Π1 ◦ L

(
v
w

)
(7.8)

F21(v) + F22(w) = Π2 ◦ L
(
v
0

)
+ Π2 ◦ L

(
0
w

)
= Π2 ◦ L

(
v
w

)
. (7.9)

So,

(
F11(v) + F12(w)
F21(v) + F22(w)

)
=

Π1 ◦ L
(
v
w

)
Π2 ◦ L

(
v
w

)
 = L

(
v
w

)
.

So, if we start with any L, we can represent L as a matrix of the linear functions
Fij .

7.2.2 In direct sums

We don’t often work with Cartesian products. So we want to use the idea
developed above to break a vector space into direct sums. Suppose that we are
given V = Z⊕W. Let us use the bad notation(

w
z

)
+

= w + z,

so that we can mimic our previous idea. Recall the idea

V W
V

� �

W

� � ,

given

F11 : W→W

F12 : Z→W

F21 : W→ Z

F22 : Z→ Z,

we can define a linear function(
F11 F12

F21 F22

)
: V→ V
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by (
F11 F12

F21 F22

)(
w
z

)
+

=

(
F11(w) + F12(z)
F21(w) + F22(z)

)
+

.

Now, we want to find something that is similar to Πi defined before. Since we
are dealing with direct sums rather than Cartesian products, idempotents are
perfect candidates. In fact, if

L =

(
F11 F12

F21 F22

)
,

then

L
(
w
0

)
+

=

(
F11(w)
F21(w)

)
+

So it is easy to see that

E ◦ L
(
w 0

)>
= F11(w) ∈W

(Id− E) ◦ L
(
w 0

)>
= F21(w) ∈ Z.

The same argument applies to find F12 and F22. So we can once again check
that

L =

 E ◦ L
∣∣∣∣
W

E ◦ L
∣∣∣∣
Z

(Id− E) ◦ L
∣∣∣∣
W

(Id− E) ◦ L
∣∣∣∣
Z

 .

So, if we have a linear function L : V→ V and with respect to the decomposition

|V = W ⊕ Z and that L has the block form

(
A B
C D

)
then it means

A := E ◦ L
∣∣∣∣
W

: W
linear−→ W,

and so on, where E is an idempotent with Im(E) = W and ker(E) = Z.

There is a little caveat: direct sum is commutative, BUT here the order of
W and Z matters in the definition of the block-matrix representation of L.

Example 7.2.1. Consider the linear function G : V→ V an idempotent, such
that V = Im(G)⊕ ker(G). So,

G =

Id
∣∣∣∣
Im(G)

O

O O

 .
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7.3 Properties of Block-matrix representation

We will show in the homework the following properties:

1. Addition: If

L =

(
A B
C D

)
and

S =

(
P Q
R T

)
then

L+ S =

(
A+ P B +Q
C +R D + T

)
.

It is not too hard to show why this is true:

[L+ S]11(w) = E [L+ S](w) = E ◦ L(w) + E ◦ S(w) = A(w) + P (w) = [A+ P ](w).

2. Scaling:

α

(
A B
C D

)
=

(
αA αB
αC αD

)
.

3. Composition also works nicely:(
A B
C D

)
◦
(
P Q
R T

)
=

(
A ◦ P +B ◦R A ◦Q+B ◦ T
C ◦ P +D ◦R C ◦Q+D ◦ T

)
. (7.10)

It is also quite straightforward to show why this is true. Consider [L◦S]11:

[L ◦ S]11(w) = E [L ◦ S](w)

= E ◦ L[E + (Id.− E)] ◦ S(w)

= E ◦ L ◦ E ◦ S(w) + E ◦ L(Id.− E) ◦ S(w)

= E ◦ L ◦ P (w) + E ◦ L ◦R(w)

= A ◦ P (w) +B ◦R(w)

= [A ◦ P +B ◦R](w).

4. Suppose

L =

(
A B
C D

)
.
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If we pick a basis β for W and γ for Z then we can write the atrix

[L]β||γ←β||γ = [ci . . . ck].

where β||γ is a concatenation of the bases and the columns:

ci = [L(bi)]β||γ

=

[(
A B
C D

)(
bi
0

)
+

]
β||γ

=

[(
A(bi)
C(bi)

)
+

]
β||γ

=

[
[A(bi)]β
[C(bi)]γ

]
where bi is the ith element of the basis set β. If we repeat this procedure
for all bi’s and gi’s, we will get:

[L]β||γ←β||γ =

(
[A]β←β [B]γ←β
[C]β←γ [D]γ←γ

)
where a block, say [C]β←γ is generated by

[C]γ←β =
[
[C(b1)]γ [C(b1)]γ . . . [C(bn)]γ

]
.

7.4 Equality of rank and trace for idempotents;
Resolution of Identity Revisited

Consider an illuminating example with an idempotent matrix: E = E2 ∈ Mn×n.

We know that Im(E)⊕ker(E) = Cn. So, E : Im(E)⊕ker(E)
linear−→ Im(E)⊕ker(E)

can be represented as

E =

(
E11 E12

E21 E22

)
where

E11 = E ◦ E
∣∣∣∣
Im(E)

= Id.

E12 = E ◦ E
∣∣∣∣
ker(E)

= O

E21 = (Id.− E) ◦ E
∣∣∣∣
Im(E)

= O

E22 = (Id.− E) ◦ E
∣∣∣∣
ker(E)

= O,
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i.e.,

E ∼

Id.
∣∣∣∣
Im(E)

O

O O

 .

The idea we have just explored in the beginning is that we can pick a basis for
Im(E) and ker(E) and concatenate to get a basis for the whole space so that we
can write

[E ]γ1||γ2←γ1||γ2 =

[
[Id.]γ1←γ1 [O]γ2←γ1
[O]γ1←γ2 [O]γ2←γ2

]
.

Now since

[Id.]γ1←γ1 = I

[O]γi←γj = 0,

we can write

E =

(
I 0
0 0

)
.

We have a theorem:

Theorem 7.4.1. Every idempotent E ∈ Mn is similar to matrix of the form
1 . . . 0

1
...

. . .
...

0
0 0


where the k 1’s along the diagonal is rank(E), which also happens to be the
trace of E , i.e.,

dim(Im(E)) = rank(E) = Tr(E).

Consequently, we have:

Properties 7.4.1. 1. Since rank(E) = Tr(E), if Tr(M) is not an integer or
negative, then M is not an idempotent.

2. Suppose we have a resolution of identity of m idempotents:

E1 + E2 + · · ·+ Em = ICn
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then

Tr(E1 + E2 + · · ·+ Em) = Tr(ICn) = n,

i.e.,

m∑
i=1

Tr(Ei) = n,

i.e.,

m∑
i=1

rank(Ei) = n.

3. Consider the same resolution of identity. Let us consider

Im(E1 + E2 + · · ·+ Em)

and

Im(E1) + Im(E2) + · · ·+ Im(Em).

Next, consider

(E1 + E2 + · · ·+ Em)(x) = E1(x) + E2(x) + · · ·+ Em(x) ∈
m∑
i=1

Im(Ei)

Therefore,

Cn = Im(ICn) = Im

(
m∑
i=1

Em

)
⊆

m∑
i=1

Im(Ei) ⊆ Cn.

So,

m∑
i=1

Im(Ei) = Cn.

But we also know that

m∑
i=1

dim(Im(Ei)) =

m∑
i=1

rank(Ei) = n.

So, we have a direct sum:

m⊕
i=1

Im(Ei) = Cn
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In particular,

dim

(
m⊕
i=2

Im(Ei)

)
= n− dim(Im(E1)) = dim(ker(E1)).

But we also know that

m⊕
i=2

Im(Ei) ⊇ Im

(
m∑
i=2

Ei

)
= Im(I − E1) = ker(E1).

But since

dim(ker(E1)) = dim

(
m⊕
i=2

Im(Ei)

)
,

it must be true that

ker(E1) =

m⊕
i=2

Im(Ei)

This implies

Im(E2) ⊆ ker(E1),

which means

E1 ◦ E2 = O.

In general, for i 6= j

Ei ◦ Ej = On×n

This leads us to the next item:

4. If E1, E2, . . . , Em are idempotents and
∑m
i=1 Ei = I then{

Ei ◦ Ej = O⊕m
i=1 Im(Ei) = Cn.

7.5 Direct sums of operators

In the last subsection, we have worked with idempotents and resolution of iden-

tity. Now, suppose we have any linear function L : V
linear−→ V, where V is finite

dimensional. Suppose we have a non-trivial L-invariant proper subspace W of
V. Then we can write

V = W ⊕�.
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Let v1, v2, . . . , vm ∈ W a basis of W, and vm+1, vm+2, . . . , vn be a basis of �.
We immediately know that

span(v1, v2, . . . , vm)⊕ span(vm+1, vm+2, . . . , vn) = V.

Now, with respect to the decomposition V = W ⊕�, we can represent L as

W �
W L11 L12

� L21 L22

where, like what we have done before

L11 = E ◦ L
∣∣∣∣
W

L12 = E ◦ L
∣∣∣∣
�

L21 = (Id.− E) ◦ L
∣∣∣∣
W

L22 = (Id.− E) ◦ L
∣∣∣∣
�

.

But notice that since W ∈ Lat(L)

L(w) ∈W = Im(E) = ker(Id.− E),

i.e.,

(Id.− E) ◦ L
∣∣∣∣
W

= O.

As a little aside, the converse is also true:

(Id.− E) ◦ L
∣∣∣∣
W

= O

=⇒ Im

(
L
∣∣∣∣
W

)
⊆ ker(Id.− E) = Im(E) = W

=⇒W ∈ Lat(L).

So, we have established that

L12 = O ⇐⇒
W �

W
� O

⇐⇒ W ∈ Lat(L)

L21 = O ⇐⇒
W �

W O
�

⇐⇒ � ∈ Lat(L).
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So, if W,� ∈ Lat(L) and W ⊕� = V then L can be represented by

W �
W A O
� O B

.

But of course the question is whether we know there is an invariant subspace
of L to start. While we don’t really have a clue as to how to find one for any
linear function L, we can surely construct one. For v0 6= 0 ∈ V. We want to
construct W ∈ Lat(L) such with v0 ∈W, i.e.,

v0 ∈W,L(v0) ∈W, . . . ,Ln(v0) ∈W.

Say Lk(v0) is that first one that is a linear combination of previous ones, i.e.,

Lk(v0) =

k−1∑
0

aiLi(v0)

then, say for k = 3, we have(
L3 − a0L0 − a1L1 − a2L2

)
(v0) = 0.

By the fundamental theorem of algebra, we can factor out the “polynomial”
above to get

(L − r1I)(L − r2I)(L − r3I)(v0) = 0.

But since v0 6= 0, at least one of L − riI is NOT injective, i.e., for some v̂ 6= 0,

L(v̂) = riv̂.

We have just shown that ri is an eigenvalue for L and v̂ is an eigenvector for L.

Theorem 7.5.1. Every linear function on C on finite dimensional vector space
has an eigenvector.

It follows immediately that

Theorem 7.5.2. Every linear function on C on finite dimensional vector space
has a one-dimensional invariant subspace.
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Chapter 8

Invariant subspaces

8.1 Triangularization

Consider V = W1 ⊕ Z, with W ∈ Lat(L) and is one-dimensional. Then

L =
W1 Z

W1 A B
Z O D

=

(
“λ′′1 B
O D

)
.

Now, for D : Z
linear−→ Z we can do the same thing we did for L if Z is not one-

dimensional. Let’s say that Z = W2⊕U, with W2 ∈ Lat(L), is one-dimensional,
then

D =

(
“λ′′2 B′
O D′

)
and so on. So,

L =

”λ2” B1 B2

O ”λ2” �
O O D̂

 ,

and so on until we get an upper triangular block-matrix. We have a theorem:

Theorem 8.1.1. Schur’s Theorem: Every n× n (complex-valued) matrix is
similar to an upper triangular matrix.

Proof. We prove by induction. The base case of n = 1 is trivial. Suppose that
n0 is the smallest size for which there is a counter example A (n0 ≥ 2). Now,
A is a linear function, and hence has an eigenvector called w0. We know that
span(w0) ∈ Lat(A). It follows that we can write

Cn = span(w0)⊕ Z.

49
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With respect to this decomposition, A has the form

A =

(
λ B
O D

)
.

Now, pick a basis of Z, called Γ2 : (w1, . . . , wn0−1). Let the basis of span(w0)
be Γ1. We have Γ = Γ1||Γ2. We know that

[A]Γ =
[
[A(w0)]Γ [A(w1)]Γ . . . [A(wn0−1)]Γ

]
=

(
λ �
O [T ]Γ2←Γ2

)
.

We know that A ∼ [A]Γ. We also know (or assume) that A is the smallest
counterexample. Then D cannot be a counter example since it is smaller than
A, i.e., A = S−1 ◦ T ◦ S for some upper triangular T . Hence

A =

(
λ �
O S−1 ◦ T ◦ S

)
=

(
1 O
O S−1

)(
λ 4
O T

)(
1 O
O S

)
But notice that the left and right block-matrices are inverses of each other, so

A ∼
(
λ 4
O T

)
,

which is an upper triangular matrix, since T is upper triangular. Hence, A is
similar to an upper triangular matrix. But this is a contradiction, i.e., there is
no such A.
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Polynomials applied to
operators

In this section we will explore a class of functions ρL : P
linear−→ L(V). We first

know from the problems that ρL is

Properties 9.0.1.

1. Linear

2. Multiplicative.

9.1 Minimal polynomials at a vector

We have shown that for each 0 6= v0 ∈ V there is some 0 6= P ∈ P such that
(P (L))(v0) = 0. Now, let us consider{

P ∈ P

∣∣∣∣(P (L))(v0) = 0

}
⊆ P.

It is easy to show that this is a subspace. But also notice that it also has
an absorption property, i.e., if (P (L))(v0) = 0 then (q(L) · P (L))(v0) = (q ·
P )(L)(v0) = 0 for any q ∈ P. We call subspaces like these (with an additional
absorption property) an ideal.

Properties 9.1.1.

1. There is the smallest unique monic polynomial.

2. There exists a unique and smallest P (L) such that P (L)(v0) = 0.

3. There exists a P (L) such that P (L)(v) = 0 for all v ∈ V.

4. There exists a unique and smallest P (A) such that P (A) = O for any
A ∈ Mn×n

51
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9.2 Existence of eigenvalues

9.3 Global minimal polynomials

If we think about it a little, it is true that

[P (L)]Γ←Γ = P ([L]Γ←Γ) .

Let us call

A = [L]Γ←Γ.

It is true that A is nothing but an element in the space of matrices, and so for
some k

P (A) = Ak − a0A0 − · · · − ak−1Ak−1 = O.

So, we look at the ideal: {
P ∈ P

∣∣∣∣P (A) = O
}
.

There exists a singe minimal monic element that sends A to O (from the prob-
lems). But if P (A) = O, then (P (A))(v0) = 0 for any v ∈ V. Therefore,

P (A) ∈
{
P ∈ P

∣∣∣∣(P (L))(v0) = 0

}
.

In particular, all elements in this ideal are divisors of P where P (A) = O. (We
also showed why this is true in the homework - has to do with the generator of
the ideal.) It turns out that P (A) is also the smallest degree monic polynomial
to annihilates A. We call P (A) the global minimum polynomial of A,
denoted µA.

What about local minimum polynomials? These are the minimal poly-
nomials at the vectors v ∈ V constructed from looking at the first Ak(v0) that
can be expressed as a linear combination of the previous ones. We denote the
local minimal polynomial of A at v0 µA,v0 . As we have shown before,

µA,v0 divides µA

since µA is necessarily a multiple of µA,v0 , as shown in the problems.

Another point to notice is that a polynomial has at most finitely man monic
divisors. So, suppose that

µA(z) = (z − r1)γ1 . . . (z − rk)γk .
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Consider a bunch of local minimal polynomials µA,v1(z), µA,v2(z), . . . µA,v135(z).
Then consider a subspace{

v

∣∣∣∣(µA,v7)(v) = 0

}
= ker (µA,v7) .

The union of these 135 subspaces is the whole space, V. And so, by problem
set 2, one of these subspaces must equal to whole union, i.e., equals the whole
space. So, µA,vi = 0 for all v ∈ V for at least one i, i.e., µA,vi annihilates A.
But because µA,vi divides µA = q · µA,vi , we have

µA,vi = µA

for at least one i.

9.4 Existence of eigenvalues

In this section we will see why we are interested in these minimal polynomials.
Suppose we have µA(z) = (z − r1)γ1 . . . (z − rk)γk . Then

µA(A) = (A− r1I)γ1 ◦ · · · ◦ (A− rkI)γk = O.

Now, we can show (by induction) that none of these factors can be invertible
(multiplying an inverse of one factor to both sides and show that we get a smaller
annihilating polynomial). Therefore, we are guaranteed that (A − riI)(v) = 0
for some non-zero vector v for any ri roots of µA. So, we have that all roots
of µA are eigenvalues of A.

But are there other eigenvalues that are NOT roots of µA? The answer,
fortunately, is no. Consider a vector (z − λ), where λ is an eigenvalue of A but
is not a root of µA. It follows that µA(z) and (z−λ) are relatively prime (since
they share no common roots). Hence, by the problems, there exist q, p ∈ P such
that

p(z)µA(z) + q(z)(z − λ) = 1,

i.e.,

p(A)µA(A) + q(A)(A− λI) = I.

But since µA(A) = O, we have

q(A)(A− λI) = I.

This implies (A − λI) is invertible, hence ker(A − λI) = {0}, thus λ is not an
eigenvalue of A, a contradiction. So no such λ exists. So, we have a theorem:

Theorem 9.4.1. All roots of µA are exactly the eigenvalues of A.
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We notice that this is a much easier way to find eigenvalues than through
using characteristic polynomials since the degrees of minimal polynomials are
often much smaller. This leads us to an interesting point. Notice that µA(z) has
degree at most n2 for an n×n matrix A (recall how we constructed µA by going
through I,A,A2, . . . and that dim(M)n×n = n2). However, the characteristic
polynomial of A has degree at most n. By Cayley-Hamilton theorem, deg(µA) ≤
deg(char(A)), so

Theorem 9.4.2. For A ∈Mn×n, deg(µA) ≤ n.

Theorem 9.4.3. Similar matrices have the same minimal polynomial.

Proof. Recall that

[P (L)]Γ←Γ = P ([L]Γ←Γ) .

This simple says if P (z) happens to be annihilating and is smallest, then P (L) =
O. It is helpful to think of polynomials as belong to the linear function, not
to matrices, as they are nothing but representations of the linear function, not
that linear function itself. Now, of course the converse is not true (consider two
identity matrices of different sizes).

Theorem 9.4.4.

µA> = µA

Proof. If A ∈Mn×n and a0I+a1A+· · ·+akAk = O. Apply the transformation
to this,

k∑
j

aj(Aj)> =

k∑
j

aj(A>)j = O.

So, if P (A) = O, then P (A>) = O. But if P (A>) = O, then P (A) = O.
Therefore, µA = µA> .

9.5 Minimal polynomials of block-diagonal op-
erators

We observe that if

T =

(
A O
O M

)
then

T 0 =

(
A0 O
O M0

)
, T 2 =

(
A2 O
O M2

)
, . . . , Tn =

(
An O
O Mn

)
.
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Thus we can convince ourselves that

P (T ) =

(
P (A) 0

0 P (M)

)
.

We can in fact think about of µT relates to µA and µM. A polynomial, say P ,
annihilates T ⇐⇒ P annihilates both A andM ⇐⇒ µA and µM both divide
P ⇐⇒ P is a common multiple of µA, µM. Now, since µT is the minimal
polynomial, whose multiples are such P ’s, we get

µT = LCM(µA, µM)

In particular, for a diagonal matrix, say

T =

α1

. . .

αk

 ,

the minimal polynomial

µT = LCM(z − α1, z − α2, . . . , z − αk) = (z − α1) . . . (z − αj),

for distinct αi, i 6= j ≤ k.

Example 9.5.1. Let

T =


3

4
1

3

 .

Then it is clear that

µT (z) = (z − 3)(z − 4)(z − 1).

And thus the “spectrum” of T is

σC(T ) = {1, 3, 4}.

9.6 (Minimal) polynomials of block-∆r opera-
tors

Consider

T =

(
A K
O M

)
.
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Then, like before

T 0 =

(
I O
O I

)
, T 2 =

(
A2 4
O M2

)
, . . . , Tn =

(
An 4′
O Mn

)
.

So,

P (T ) =

(
P (A) �
O P (M)

)
.

If P (T ) = O, then P (A) = O and P (M) = O. Thus, P is a common multiple
(not necessarily least) of µA and µM. (Notice that we no longer have ⇐⇒ like
with block-diagonal matrices.)

Thus we have

LCM(µA, µM)
∣∣P (T ).

But we also know that

(µA · µM)(T ) = µA(T ) · µM(T )

=

(
O O
O µA(M)

)(
µM(A) O
O O

)
=

(
O O
O O

)
= [0].

Therefore,

LCM(µA, µM)
∣∣µT ∣∣µAµM

and hence

σC(T ) = σC(A) ∪ σC(M)

i.e., linear factors of T are exactly those that appear in µA or µM (or both).

Of course “equality” occurs when µA and µM are relatively prime.

Example 9.6.1. Consider

T =


3 1

4
2 8
5 1

2 7
3

 .

Then

σC(T ) = σC

(
3 1

4

)
∪ σC

(
2 7

3

)
= σC[3] ∪ σC[4] ∪ σC[2] ∪ σC[3]

= {2, 3, 4}.
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We could have guessed this result - these are just the values on the diagonal of
T . What, then, is µT (z)? Unfortunately, we don’t know:

µT (z) = (z − 2)(z − 4)(z − 3)1 or 2.

Example 9.6.2. If T =

(
a b
c d

)
then p(z) = (z − a)(z − d)− bc annihilates T .

Proof.

p(T ) = (T − aI)(TdI)− bcI

=

(
0 b
c d− a

)(
a− d b
c 0

)
−
(
bc 0
0 bc

)
=

(
bc 0
0 bc

)
−
(
bc 0
0 bc

)
= [0].

We have a theorem:

Theorem 9.6.1. If T =

(
a b
c d

)
is NOT a multiple of identity, then µT (z) =

(z − a)(z − d)− bc.
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Chapter 10

Primary decomposition
over C and generalized
eigenspaces

Before getting into primary decomposition, we first establish a few stepping
stones to get to and understand the theorems to come. Suppose we have rela-
tively prime polynomials p1 and p2. Then

ker(p1(L)) ∩ ker(p2(L)) = {O}.

Sketch. We know (from the problem sets) that given relatively prime p1 and p2,
there exist q1, q2 such that

q1(z)p1(z) + q2(z)p2(z) = 1.

Thus, for L as argument,

q1(L)p1(L) + q2(L)p2(L) = I,

which we can write as

(q1(L)p1(L) + q2(L)p2(L)) (v) = v,

i.e.,

q1(L)[(p1(L)(v))] + q2(L)[(p2(L)(v))] = v.

Now, if v ∈ ker(p1(L)) ∩ ker(p2(L)), then

q1(L)(0) + q2(L)(0) = v =⇒ v = 0.

This shows that

ker(p1(L)) ∩ ker(p2(L)) = {0}.
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Now, let’s say we’re given

µA(z) = (z − λ1)k1 . . . (z − λn)kn .

Let us call

p1 = (z − λ1)k1 . . . (z − λn−1)kn−1

p2 = (z − λn)kn .

It is clear that p1, p2 are relatively prime. So, ker(p1(L)) ∩ ker(p2(L)) = {0}.
Also,

p1(A)p2(A) = µA(A) = O = p2(A)p1(A),

so, {
Im(p1(A)) ⊆ ker(p2(A))

Im(p2(A)) ⊆ ker(p1(A))
.

Yet also, for some q1, q2

q1(z)p1(z) + q2(z)p2(z) = 1.

Thus,

p1(A)q1(A) + p2(A)q2(A) = I.

Hence, for all y ∈ V

p1(A)[q1(A)(y)] + p2[q2(A)(y)] = y.

But from the subset conditions, it is necessary that

ker(p2(A)) + ker(p1(A)) = V.

But since these kernels intersect trivially,

V = ker(p1(A))⊕ ker(p2(A))

Now, we observe that p(A) and A commute, so from the problems, we get two
invariant subspaces {

ker(p1(A)) ∈ Lat(A)

ker(p2(A)) ∈ Lat(A)
.

With respect to this decomposition, A can be expressed as

A =
ker(p1(A)) ker(p2(A))

ker(p1(A)) C O
ker(p2(A)) O D

.
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What are µC and µD? It is clear that µC = p1 and D = p2. Consider

q1(A)

(
x
y

)
+

= q1(A)(x) + q1(A)(y) = q1(C)(x) + q1(D)(y).

We know that x ∈ ker(p1(A)), so this reduces to

q1(A)(y) = q1(C)(x) + q1(D)(y),

which holds for all x. So, for y = 0, we must have q1(C) = O, i.e, p1 annihi-
lates C. So we can keep going and break the blocks C and D down into smaller
block-diagonal pieces.

So, just a recap, if q1, q2 are relatively prime and q1 ·q2 annihilates A : V
linear−→

V, then V = ker(p1(A)) ⊕ ker(p2(A)) and with respect to this decomposition
A has the form

A =

(
C O
O D

)
where q1 annihilates C and q2 annihilates D. So, we have a little theorem:

Theorem 10.0.1. Under the hypotheses of the summary, if q1, q2 are monic
and µA = q1 · q2, then {

q1 = µC

q2 = µD
.

Sketch. We know that

µA = µC O
O D

 = LCM(µC , µD).

Now, µC divides q1 because q1 annihilates C. Similarly, µD divides q2 because
q2 annihilates D. But since q1, q2 are relatively prime, µC , µD are also relatively
prime. Hence,

LCM(µC , µD) = µC · µD.

Therefore,

µA = µC · µD.

But we also know that µA = q1 · q2 = µC · µD and µC
∣∣p1 and µD

∣∣p2, we must
have {

q1 = µC

q2 = µD
.
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Theorem 10.0.2. Primary Decomposition Theorem:

Suppose A : V
linear−→ V and µA(z) = (z − λ1)p1 . . . (z − λk)pk , then

V = ker(A− λ1I)p1 ⊕ · · · ⊕ ker(A− λkI)pk

and with respect to this decomposition, A has the form

A =

A1

. . .

Ak


with µAi

(z) = (z − λi)pi .

Proof. We induct on k. The base case where k = 1 is trivially true. Consider
the inductive hypothesis. Suppose that k = 1, 2, . . . ,m hold. We want to show
that the case where k = m+ 1 also holds, i.e.,

µA = (z − λ1)q1 . . . (z − λm)qm(z − λm+1)qm+1 .

Let p1 = (z − λ1)q1 . . . (z − λm)qm and p2 = (z − λm+1)qm+1 , i.e., by the

lemma we just proved, A =

(
B O
O C

)
with respect to the decomposition V =

ker(p1(A))⊕ ker(p2(A)) and µB = p1 and C = p2.

By the inductive hypothesis, ker(p1(A)) = ker(B − λ1I)q1 ⊕ · · · ⊕ ker(B −

λm)qm , and with respect to this decomposition, B =

B1

. . .

Bm

 and

µBi
(z) = (z − λi)qi . Hence, by the problem sets, A can be represented as

A =


B1

. . .

Bm
C


with respect to the decomposition V = ker(B− λ1I)q1⊕ · · · ⊕ ker(B− λm)qm ⊕
ker(A− λm+1I)qm+1 .

So, the next step is to show ker(B − λiI)qi = ker(A− λiI)qi for all i. First,
we know that

ker(A− λiI)qi ⊆ ker ((A− λ1)q1 . . . (A− λmI)qm)

, since the factors can commute among themselves. Hence, we just rewrite this
as

ker(A− λiI)qi ⊆ ker(q1(A)).
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Similarly, we can show

ker(B − λiI)qi ⊆ ker(q1(A)).

Now, recall that

A =

(
B O
O C

)
,

thus,

(A− λiI)qi =

(
(B − λi)qi O
O �

)
.

Consider x ∈ ker ((A− λiI)qi), i.e.,

(A− λiI)qi(x) = 0

⇐⇒
(
B O
O C

)(
x
0

)
+

⇐⇒ (B − λiI)qi(x) = 0

⇐⇒ x ∈ ker ((B − λiI)qi) .

So we have just shown that

ker ((A− λiI)qi) = ker ((B − λiI)qi)

for all i. This completes our proof.
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Chapter 11

Cyclic decomposition and
Jordan form

We can immediately follow the primary decomposition theorem with another
theorem:

Theorem 11.0.1. Ever L : V
linear−→ V, where V is finite dimensional, can be

expressed as a direct sum of operators:

L = L1 ⊕ L2 ⊕ · · · ⊕ Lm,

where

Li = λiI +Ni,

where Ni is nilpotent.

It is worthwhile to study some properties of nilpotents.

11.1 Nilpotents

First, we want to look at the structure of nilpotents. Given a nilpotent N :

V
linear−→ V, such that, say N 8 = O (and hence µN (z) = z8) and v0 ∈ V, we

write

〈v0〉 = span
{
v0,N (v0), . . . ,N 7(v0)

}
= {P (N )(v0)

∣∣deg(P ) ≤ 7} ∈ Lat(N ),

a cyclic invariant subspace.

Theorem 11.1.1. For any nilpotentN as above, there exist some v1, v2, . . . vk ∈
V such that

V = 〈v0〉 ⊕ 〈v1〉 ⊕ · · · ⊕ 〈vk〉

65
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We will look at the proof later, but with respect to this decomposition, N
is block-diagonal:

N =

N1 O O

O
. . . O

O O Nk

 .

Let us suppose that the v0 up to N 5(v0) are linear independent, then

N 6(v0) =

5∑
i=0

aiN i(v0),

i.e.,

(N 6 − a5N 5 − . . . a0I)(v0) = q(N )(v0) = 0.

But recall that the global minimal polynomial for N is µN (z) = z8, and that
the local minimal polynomial divides th global. This means that q(N ) = N k

for some k ≤ 8. So, the local minimal polynomial has to have degree 6. This
implies N 6(v0) = 0. Therefore, v0,N (v0), . . . ,N 5(v0) is a basis of 〈v0〉. So, the
first block along the diagonal of N can be written as

N1 =

span(v0) span(N (v0)) . . . span(N 5(v0))
span(v0) 0 0 . . . 0

span(N (v0)) 1 0 . . . 0
...

... 1
...

...
...

...
...

span(N 5(v0)) 0 0 . . . 0

=



0 0 0
1 0

1
. . .

. . .
. . .

0 0 1 0


Of course, conventionally, we would prefer upper triangular matrices, so we

simply reverse the order of the basis elements to get

N1 =



0 1 0
0 1

. . .
. . .

. . . 1
0 0
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Theorem 11.1.2. Cyclic Decomposition for Nilpotents:

If N : V
linear−→ V, V is finite dimensional, is nilpotent then V =

⊕k
1〈vi〉N for

some non-zero vi.

In fact, we can choose any v1 to start with. And with respect to this decom-
position, N has the form N1 ⊕ · · · ⊕ Nk

Theorem 11.1.3. If N : V
linear−→ V nilpotent, V is finite dimensional, then

there is a basis ψ (which can be constructed by concatenation) for V such that

[N ]ψ←ψ =

[N1]
. . .

[Nk]

 ,

where each block [Ni] has the form

[Ni] =



0 1 0
0 1

. . .
. . .

. . . 1
0 0



11.2 Jordan canonical form theorem

Theorem 11.2.1.

A,B similar ⇐⇒ A,B have the same JCF

We can “improve” the previous idea by considering A − λI = N , i.e., A =
λI +N , and so

[λI +N ]ψ←ψ = [λI]ψ←ψ + [N ]ψ←ψ =

A1

. . .

Ak


where each Ai is called a Jordan block, denoted Jλ,size. For example,

Jλ,2 =

(
λ 1
0 λ

)
.

Theorem 11.2.2. Jordan canonical form theorem:
Every matrix is similar to a unique (up to changing order of appearance) direct
sum of Jordan blocks.
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Proof. There are two parts to this proof. First, we want to show that this holds
for nilpotents N . Then, we extend it and show it also holds for A = λI+N .

Step 1: Let us revisit the idea of Weyr characteristic. Consider

N =

J0,9

. . .

J0,1

 .

Let’s say that fromN we find that

{0}
+8
⊂ ker(N )

+7
⊂ ker(N 2)

+7
⊂ ker(N 3) ⊂ · · · ⊂ ker(N 9) = V

where the numbers indicate the increase in the dimension. Then, if we were
given only the Weyr characteristics, i.e., the inclusion chain above, is it possible
for us to generate N ? It turns out that the answer is YES. Basically, each
number, going from left-to-right, gives us some extra information about N . For
instance, the first dimension increase gives us the number of Jordan blocks in
N . The difference between the second and the first number gives us the number
of J0,1 blocks. The different between the third and the second number gives us
the number of J0,2 blocks, and so on. (The most straightforward way to see
how this works is to generate an example and go through the algorithm.)

So, we can see that no matter how the decomposition might differ, this Jor-
dan construction is determined by just N (since we can reconstruct the Jordan
form of N by just looking at the Weyr characteristics). So, if we have two
similar idempotents, then they have the same Weyr characteristics, i.e., they
must also have the same Jordan canonical form. But since we also know that
if two nilpotents have the same Jordan-block decomposition then they are sim-
ilar. Therefore, the Weyr characteristics of N completely determines
the Jordan block sizes and their multiplicities, i.e., completely deter-
mines the Jordan form of N (of course, up to order of appearance).

Similar matrices have the same Weyr characteristics, similar nilpotents have
the same Jordan form. Conversely, if two nilpotents have the same Jordan form,
hen they are similar to it, and so to each other. Therefore, we say that Jordan
form is a “complete invariant” for similarity of nilpotents.

Step 2: But what about A+λI +N ? We observe that if A = λI +N then
the Weyr characteristics of A− λI determines the Jordan form of A. But what
if we don’t know λ? What if all we know is that A = � · I +N ? It turns out
that we can simply use Tr(A) to figure out what λ is because A in matrix form
has only λ’s along the diagonal:

λ =
Tr(A)

Size of A
.
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(recall that Tr(A) does not change in different representations, i.e., it is “similarity-
invariant”).

Now, similar matrices have the same Jordan forms.

11.3 Diagonalizability

Recall that Every n × n matrix is triangularizable; i.e., every square matrix is
similar to an upper or lower triangular matrix. Equivalently, any linear operator
L ∈ L(V) can be represented by an upper triangular matrix for some basis.

So which matrices are diagonalizable? To answer this, we can reverse engi-
neer: if A ∼ D, where D is diagonal, then their minimal polynomials are the
same: µA = µD, and

µD(z) = (z − d1) . . . (z − dk)

where all di’s are distinct, i.e., µD has no repeated roots, i.e., all roots of µD
have multiplicity 1. Next, we observe that for a given Jordan block Jλ,β , its
minimal polynomial is µJ (z) = (z − λ)β . Now, if A ∼ J1 ⊕ J2 ⊕ · · · ⊕ Jk,
then µA = lcm(µJ1 , . . . , µJk

). So in particular, µJi is a factor of µA for each
i. So if µA has no repeated roots, then no µJi

have no repeated roots, i.e.,
µJi

(z) = z − λi, i.e., J has size 1. This says A is similar to a direct sum of
1× 1 Jordan blocks, i.e., similar to a diagonal matrix. We the following:

Theorem 11.3.1. The following statements are equivalent:

1. A is a diagonalizable.

2. µA has no repeated roots.

3. There is a basis of Cn made up entirely of eigenvectors of A, called an
A-eigenbasis of Cn.

Of course, we can always check for repeated roots by looking at µA and µ′A.
If µA has repeated roots, then there exists a root r such that µA(r) = µ′A(r) = 0.
To check if µA and µ′A have no common roots, we use the division algorithm
and find the greatest common divisor of the polynomials. If the gcd turns out to
be the constantly one polynomial, then the polynomial have no common roots.

Theorem 11.3.2. Spectral Mapping Theorem: Let a matrix A be given,
then

σC(p(A)) = p [σC(A)] .



70 CHAPTER 11. CYCLIC DECOMPOSITION AND JORDAN FORM

For example,

σC(α(A)) = α [σC(A)]

σC(A+ βI) = σC(A) + β

Now, suppose that A is invertible. Then for an eigenvector v,

A−1v = λv ⇐⇒ 1

v
v = Av.

Theorem 11.3.3.

γ ∈ σC(A−1) ⇐⇒ 1

γ
∈ σC(A).

11.4 Simultaneous triangularizability and diag-
onalizability

We first look at simultaneous diagonalizability. Suppose we have A,B ∈
L(V), and an invertible S such that S−1AS and S−1BS are diagonal. Then

S−1ASS−1BS = S−1ABS = S−1BAS = S−1BSS−1AS ⇐⇒ AB = BA.

So we have the necessary conditions for simultaneous diagonalizability:

1. Individual diagonalizability

2. Commutativity.

It turns out that they are also sufficient.

Theorem 11.4.1. (†) The following are equivalent for a collection of F ∈ Mn:

1. F is a commutative collection and all element of F are individually diag-
onalizable.

2. There is an invertible S such that S−1AS is diagonal for every A ∈ F .

To prove this, we first prove the following smaller theorem:

Theorem 11.4.2. A is diagonalizable ⇐⇒ A = α1E1 + . . . αkEk for some
non-zero idempotents such that E1 + . . . Ek = I.

Proof. ( =⇒ ) A diagonalizable if and only if S−1AS = β1F1 + dotsβmFm
diagonal, where Fi’s are non-zero idempotents that resolve identity. Then.

A = S [β1F1 + dotsβmFm]S−1 =

m∑
i=1

βi(SFiS−1).
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Now, since each SFiS−1 is also an idempotent, we can write

A =

m∑
i=1

βiEi,

where
∑m
i=1 Em = S−1 (

∑m
i=1 Fi)S = I.

( ⇐= ) Now, suppose that A =
∑k
i=1 αiEi where Ei’s idempotent that to-

gether resolve identity. Then we know that V =
⊕

Im(Ei) = Cp. Now, let Γi
be a basis for Im(Ei), then Γ = Γ1||Γ2|| dots||Γk is a basis for Cp. With re-
spect to this decomposition, we can express A as a block-diagonal matrix with
block-entries:

Aij = Ei ◦ A ◦ Ej
∣∣∣∣
Im(Ej)

= δijαiEi
∣∣∣∣
Im(Ei)

= αI
∣∣∣∣
Im(Ei)

.

So it is obvious that

[A]Γ←Γ =

α1

. . .

αk


So, A is diagonalizable.

Before we prove Theorem (†), we must show that αi’s are exactly the eigen-
values of A, that Im(Ei) = EA(αi) for any i, and the representation of A as

A =
∑k
i=1 αkEk is unique, where the αi’s are distinct. The proof will not be

reproduced here, since it is one of the problems in the back. But the key to this
is Lagrange’s Interpolation formula:

pi(z) =

k∏
j=1,j 6=i

z − αj
αi − αj

where (you can check) that pi(A) = Ei. Another key to the the proof is the
fact that any idempotent can be written as a diagonal with zero everywhere and
a block-identity along the diagonal. Once this is done, we will have “mined”
another theorem

Theorem 11.4.3. Each spectral idempotent of a diagonalizable A is a poly-
nomial in A, i.e., is of the form p(A) for some polynomial p (given by the
Lagrange Interpolation formula).

Now we are ready for the proof of Theorem (†). We will dod this by induction
on n.
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Proof. ( =⇒ ) The base case where n = 1 is trivially true. Now, suppose that
the theorem holds for all 1 ≤ n < n0. We want to show that it also holds for
n0. If F contains only scalar multiples of identity, then we are done So, let us
assume that F contains A’s that are not multiples of identity. Then, by the
theorem we just proved

A =

k∑
i=1

αiEi,

for some idempotents Ei that together resolve identity, and distinct αi’s which
are exactly the eigenvalues of A. Now, since the αi’s are distinct, n0 ≥ 2. Next,
recall that Ei = pi(A), for some polynomial pi and that every B ∈ F commutes
with A. This means B commutes with pi(A), and in particular, commutes with
every Ei. So, the block-matrix representation, the block-entries of B can be
written as

Bij = EiBEj
∣∣∣∣
Im(Ej)

= EiEjB = δijB
∣∣∣∣
restricted

.

So, B is block-diagonal:

B =

B11

. . .

Bkk

 .
Now, since A and B commute, Aij commutes with Bij . But Bij are individually
diagonalizable by hypothesis, so we can go on and find a basis for which each
[Bij ] is diagonal, concatenate, and form the basis for the entire underlying space,
making B diagonalizable.

The proof in the other direction is easy. This will be reproduced in the
problems.



Chapter 12

Inner products and norms

Definition 12.0.1. Inner product An inner product φ : V × V → C on a
vector space V is a function satisfying the following conditions:

1. φ is partially linear in the first slot, partially conjugate linear in the second,
i.e.,

φ(αv1 + βv2, w) = αφ(v1, w) + βφ(v2, w)

φ(w,αv1 + βv2) = ᾱφ(w, v1) + β̄φ(w, v2).

2. Conjugate symmetry: ¯φ(v, w) = φ(w, v).

3. Definiteness: φ(v, v) ≥ 0, equality holds if and only if v = 0

Definition 12.0.2. Standard inner product on Cn

〈

ab
c

 ,
(
α, β, γ

)
〉 = aᾱ+ b ¯beta+ cγ̄,

so that

〈

ab
c

 ,
(
a, b, c

)
〉 = |a|2 + |b|2 + |c|2 =

∥∥∥∥∥∥
ab
c

∥∥∥∥∥∥
2

.

Definition 12.0.3. Inner product space An inner product space is a vector
space with an inner product.

We also observe that if (v, φ) is an inner product space, then ‖v‖ :=
√
φ(v, v)

defines a “norm” such that

73
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1. ‖ ‖ : V→ [0,∞)

2. ‖v‖ = 0 ⇐⇒ v = 0

3. ‖αv‖ = |α| · ‖v‖

4. ‖u+ v‖ ≤ ‖u‖+ ‖v‖ (triangle inequality)

5. ‖〈u, v〉‖ ≤ ‖u‖ · ‖v‖ (Cauchy-Schwarz inequality).

12.1 Orthogonality

Let’s have a preliminary “definition:” u, v orthogonal ⇐⇒ 〈u, v〉 = 0.
But there’s a little more to the story. For any S ⊆ V, we let

S⊥ =
{
v ∈ V

∣∣〈v, s〉 = 0 for any s ∈ S
}
.

We observe three things:

1. 0V ∈ §⊥.

2. 0V ∈ V⊥ =
{
v ∈ V

∣∣〈v, w〉 = 0 for any w ∈ V
}

.

3. Suppose v0 ∈ V⊥, then 〈v0, v0〉 = 0, then v0 = 0.

Theorem 12.1.1. If W ≺ V, where V is finite-dimensional, then W⊕W⊥ =
V.

Proof. There are two things we need to do to prove this:

1. Showing that W ∩W⊥ = {0}

2. W + W⊥ = V.

The first item is already true, so we need to show the second item. Let
w1, . . . , wk be a basis for W and let v ∈ V be given. We want to show that
there exist α1, . . . , αk ∈ C such that

∑k
i=1 αiwi + y = v for some y ∈W⊥, i.e.,

we want to show that there exist the αi’s such that

v −
k∑
i=1

αiwi ∈W⊥,
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i.e., there exist the αi’s such that for j = 1, 2, 3, . . . , k

〈v −
k∑
i=1

αiwi, wj〉 = 0.

Thus we have a system of equations, which can be put into matrix form〈w1, w1〉 . . . 〈wk, w1〉
...

. . .
...

〈w1, wk〉 . . . 〈wk, wk〉


α1

...
αk

 =

〈v, w1〉
...

〈v, wk〉

 .
We shall show that the above matrix, called the Gramian matrix, is invertible.
But since it is a square matrix, we can just show it is injective. Suppose that

G(γ) = 0,

where γ =
[
α1 . . . αk

]>
, then for any j = 1, 2, . . . , k

0 =

k∑
i=1

γi〈wi, wj〉.

So,
∑k
i=1 γiwi ⊥ wj for any j = 1, 2, . . . , k. In particular,

k∑
i=1

γiwi ⊥
k∑
i=1

γiwi ⇐⇒
k∑
i=1

γiwi = 0.

Thus γi0 for any i = 1, 2, . . . , k. Hence, G is injective, i.e., it is invertible.

Note that this theorem does not hold for infinite dimensional cases. We
will not go into the details of why this is the case, but it is an important thing
to keep in mind.

Now, we make the following observation that an orthonormal list in an inner
product space is linearly independent. This is quite easy to show. Suppose∑k
i=1 αivi = 0 where v1, . . . , vk are mutually orthogonal unit vectors. Then we

have

0 = 〈0, vi〉 = αi〈vi, vi〉+ 0 = αi.

This means all vi’s are linearly independent. We have a theorem.

Theorem 12.1.2. Every finite dimensional inner product space (that is non-
trivial) has an orthonormal basis, and in fact any orthonormal list can be en-
larged to one.
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12.2 Riesz representation theorem

Theorem 12.2.1. Riesz Representation Theorem Suppose V is an finite-

dimensional inner product space (fdips) and ρ : V
linear−→ C. Then there exists

exactly one w0 ∈ V such that

ρ(v) = 〈v, w0〉

for any v ∈ V.

Proof. By rank-nullity theorem, we first have that

rank(ρ) + nullity(ρ) = dim(V).

Now, ρ maps to C, so its rank is either 0 or 1. If its rank is zero,then ρ ≡ 0, so
w0 = 0 unique. If its rank if 1, then we look at

ker(ρ)⊕ ker ρ⊥ = V,

which tells us that ker(ρ)> has dimension one. Thus, ker(ρ)> = span(z0), where
z0 is some unit vector. Now,

ρ(z0) 6= 0 =⇒ 1

ρ(z0)
z0 ∈ span(z0),

and

ρ

(
1

ρ(z0)

)
= ρ(z1) =

1

ρ(z0)
ρ(z0) = 1.

And so, span(z0) = span(z1). Thus for any v ∈ V, v = w+αz1 where w ∈ ker(ρ)
and z1 ∈ ker(ρ)⊥ uniquely. So,

ρ(v) = ρ(w + αz1) = 0 + αρ(z1) = α.

So the next question is for which vector h such that ρ(v) = 〈v, h〉 for all v? Well,
we already know that ρ(v) = α. After a bit of thinking, if we set h = z1/‖z1‖,
then

ρ(v) = ρ(w + αz1) = α〈z1,
z1

‖z1‖
〉 = α

‖z1‖
‖z1‖

= α.

And so, let us pick w0 = z1
‖z1‖ , then we have

ρ(v) = 〈v, w0〉

for any v ∈ V. Showing uniqueness of w0 is not too hard: Assume that ρ(v) =
〈v, w0〉 = 〈v, w1〉. Then

〈v, w0〉 − 〈v, w1〉 = 〈v, w0 − w1〉 = 0 ⇐⇒ w0 = w1.

This completes the proof.
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What are the consequences of this theorem? Well, suppose that we have

L : V
linear−→ V, where V is an fdips. Then consider

f() := 〈L(), y0〉,

where f : V
linear−→ C. So, f must be like

f() = 〈(), w0〉

for some unique w0 ∈ V and w0 depends on y0 and L. So let us write w0 = L(y0).
Now, consider wL : V→ V. Now,

f() = 〈(), w0〉 = 〈L(), y0〉 =⇒ 〈x,wL(αy0)〉 = 〈Lx, αy0〉 = · · · = 〈x, αwL(y0)〉.

So we have

wL(αy0) = αwL(y0).

We can indeed show that additivity also works here as well. And so wL : VlinV
has the property that

〈L(), y〉 = 〈(), wL(y)〉.

We call wL the adjoint of L, denoted L∗. Note that in this text I will use
both L∗ and L† notations. Another (mathematical) thing to notice is that L∗
depends on the inner product, but not the basis.

12.3 Adjoints

Now, let’s say we have L : V
linear−→ U where both V,U are fdips. Let Γ be an

orthonormal basis for V and Ω be an orthonormal basis for U. Then we can
show that

[L∗]γ←Ω =
( ¯[L]Ω←Γ

)>
This is an exercise at the back. There’s no good way to do this problem except
entry-by-entry. Of course, “think indices.”
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Chapter 13

Isometries and unitary
operators

The OPTIONAL problems covers this in detail. I will add the theorems to this
section later. (source: Leo’s Optional Practice Problem Set).
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Chapter 14

Ortho-triangularization

Theorem 14.0.1. Schur’s Theorem: For each operator L : V
linear−→ V where

Vis an fdips there is an orthonormal basis Γ of V such that [L]Γ←Γ is upper
triangular.

Proof. Here is a sketch of the proof. The full proof (I believe) is in the back.
The theorem is trivially true for the one-dimensional case. So let us look at
the two-dimensional case. Now, there is a unit eigenpair (λ, v0) for L (existence
of eigenvalues). Now, let W = span(v0). This subspace is one-dimensional.
Then, V = W ⊕W⊥. Let v1 be a unit vector in W⊥. Then Γ(v0, v1) is an
orthonormal basis of V. Then

[L]Γ←Γ =

[
λ �
4

]
,

which is upper triangular. Next, we look at the three-dimensional case. Once
again,

[L]Γ←Γ =

[
λ �
M

]
,

whereM is a 2×2 block. But we have already proven the two-dimensional case
(we can find a basis such that M is upper triangular...) And so by induction
we get [L]Γ←Γ upper-triangular.
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Chapter 15

Ortho-diagonalization;
Self-adjoint and Normal
Operators; Spectral
Theorems

15.1 Towards the Spectral Theorem

We make a few observations before diving into the good stuff:

1. Suppose M∈ Mn, and M =

[
A B
C D

]
then M∗ =

[
A∗ C∗
B∗ D∗

]
.

2. Suppose M is normal, then MM∗ = M∗M, which means that if M =[
A B
C D

]
then (by the fact that tr(A∗A) = tr(AA∗) and tr(A∗A) = 0 ⇐⇒

A = 0) we have tr(BB∗) = tr(C∗C).

3. Suppose that A is block-upper triangular i.e., C = 0, and that A is normal,
then A has to be diagonal. And so every normal operator has a matrix
representation that is diagonal.

4. What about the converse? - we might ask ourselves.

15.2 The Spectral Theorem

The following statements are equivalent:

1. A is normal then there is an orthonormal basis of the underlying space
made up entirely of the eigenvectors of A.
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2. A : V
linear−→ V, then there exist an appropriate orthonormal basis Γ such

that [A]Γ←Γ is diagonal.

3. V =
⊕k

i=1 Eλi
where Eλi

are mutually orthogonal λi-eigenspaces of A.

4. Spectral Resolution: A =
∑k
i=1 λiEi, where Ei’s are ortho-projections

(which are non-negative self-adjoint operators, i.e., E2
i = Ei = E∗i and

σC(Ei) ⊆ {0, 1}) and the distinct λi’s are exactly the eigenvalues of A.

It’s probably crucial that we make the following distinction:

1. Diagonalizable =⇒ operator can be written as a linear combination of
idempotents which resolve identity.

2. Normal =⇒ operator can be written as a linear combination of ortho-
projections

Recall that for idempotents, V = Im(E) ⊕ ker(E). For ortho-projections,
Im(E) ⊥ ker(E).

15.3 Spectral Theorem for Matrices

It follows naturally that

Theorem 15.3.1. Matrix M is normal ⇐⇒ M is unitarily equivalent to a
diagonal matrix.

In fact, the right-to-left direction holds by a simple check. Suppose that
A∗MA = D is diagonal, and A is unitary. Does this mean M is normal? The
answer is YES. M = ADA∗ then M∗ = AD∗A∗. And so,

M∗M = AD∗A∗ADA∗ = AD∗DA∗ = ADD∗A∗ = ADA∗AD∗A∗ =MM∗.

So M is indeed normal.

Theorem 15.3.2. Schur’s Theorem - extended Every n× n matrix is uni-
tarily equivalent to a triangular matrix.



Chapter 16

Positive (semi-)definite
operators

Now, if we go back to normal matrices. If A is normal, then A =
∑k
i=1 λiEi

where λi’s are the eigenvalues of A and Ei’s are ortho-projections that resolve
identity. Now, what else can we “mine” from the spectral theorem? Well, if A
is normal, then it is unitarily equivalent to a diagonal matrix, so A = U∗DU
where D is diagonal whose entries are the eigenvalues of A. Then it follows that
A2 = U∗D2U . In fact, if we define

f(A) :=

k∑
i=1

f(λi)Ei

then we have

f(A) = U∗

f(λ1)
. . .

f(λk)

 .
Now, let’s go a bit further. Suppose that A is not only normal but also has

σC(A) ⊆ [0,∞) (so A is now non-negative). Then

√
A ·
√
A =

(
k∑
i=1

√
λiEi

) k∑
j=1

√
λjEj

 =

k∑
i=1

λiEi = A.

But if we look at
√
A, we can see that

√
A is also non-negative, hence self-

adjoint, hence normal. And so we have

Theorem 16.0.1. Every non-negative normal matrix A has a unique non-
negative normal square root

√
A.

The uniqueness proof is provided in the PRACTICE problem set.
I will reproduce the proof here later.
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16.1 Underlying Space Resolution For Normal
Operators

Theorem 16.1.1. Suppose that V is an fdips, and L is a linear operator on
V, then

ker(L∗) = Im(L)⊥

ker(A)⊥ = ker(A∗∗)⊥ = Im(A∗).

Proof. Then consider the following string of arguments (for any x ∈ V)

y ∈ Im(L)⊥ ⇐⇒ 〈Lx, y〉 = 0

⇐⇒ 〈x,L∗y〉 = 0

⇐⇒ L∗y = 0

⇐⇒ y ∈ ker(L∗).

Now, it turns out that

ker(A∗A) = ker(A)

ker(AA∗) = ker(A∗)

Proof.

〈A∗Ax, x〉 = 〈Ax,Ax〉 = ‖Ax‖2.

If A∗Ax = 0, then ‖Ax‖2 = 0, then Ax = 0. And if Ax = 0, then A∗Ax = 0,
so 〈A∗Ax, x〉 = 0.

And so we have the following:

Ax = 0 ⇐⇒ A∗Ax = 0, i.e., ker(A) = ker(A∗A).

So now, we automatically have that (using the fact that A∗A is self-adjoint
- one can check this by inspection)

ker(A∗A) = ker(A)

(ker(A∗A))⊥ = ker(A)⊥

Im((A∗A)
∗
) = Im(A∗)

Im(A∗A) = Im(A∗).

Similarly, we also have

Im(AA∗) = Im(A).

Now, x ∈ ker(A∗) ⇐⇒ A∗x = 0 ⇐⇒ ‖A∗x‖2 = 0 ⇐⇒ 〈A∗x,A∗x〉 =
0 ⇐⇒ 〈AA∗x, x〉 = 0. Similarly, x ∈ ker(A) ⇐⇒ 〈A∗Ax, x〉 = 0. And so, if
A is normal, then ker(A) = ker(A∗). Thus
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Theorem 16.1.2. A normal =⇒ ker(A) = ker(A∗) = Im(A)⊥.

Now, since we also know that A∗A is non-negative (so it’s self-adjoint),
there is exactly one

√
A∗A non-negative. And similarly, AA∗ is non-negative,

so there is exactly one
√
AA∗ non-negative. Now, we observe that

x ∈ ker(
√
A∗A) ⇐⇒

∥∥∥√A∗Ax∥∥∥2

= 0

⇐⇒ 〈
√
A∗Ax,

√
AAx〉 = 0

⇐⇒ 〈
√
A∗A

∗√
A∗Ax, x〉 = 0

⇐⇒ 〈A∗Ax, x〉 = 0

⇐⇒ ‖Ax‖2 = 0

⇐⇒ x ∈ ker(A),

since A is nn-negative. Therefore, we have just shown that

ker(A∗A) = ker(
√
A∗A) = ker(A).

And similarly, of course,

ker(AA∗) = ker(
√
AA∗) = ker(A∗).

Lastly,

Im(
√
A∗A) =

(
ker((

√
A∗A)

∗
)
)⊥

= ker(
√
A∗A)⊥ = ker(A)⊥ = Im(A∗).

So we just showed that

Im(
√
A∗A) = Im(A∗A) = Im(A∗)

Im(
√
AA∗) = Im(AA∗) = Im(A).

Now, as we will show in one of the practice problems, we have the following
amazing theorem:

Theorem 16.1.3. ∥∥∥√A∗Ax∥∥∥ = ‖Ax‖.
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Chapter 17

Polar decomposition

Let A any linear function A : V
linear−→ W be given. Let us define a new function:

φ : ker(A)⊥ → Im(A) as

φ
[√
A∗Ax

]
:= Ax.

It can be easily shown that φ is not only linear but it is also an isometry (length-
preserving). The key here is to recognize that

φ = A ◦

[
√
A∗A

∣∣∣∣
ker(A)⊥

]−1

.

Now, let us turn A into an operator by requiring the W is V itself, then
dim(ker(A)) = dim(Im(A)⊥). Then, we can define another isometry ψ : ker(A)→
Im(A)⊥. To do this, we simply pick an orthonormal basis Γ of ker(A) and an
orthonormal basis Ω of Im(A)⊥, then send one basis element to another one in
the other space. It is very easy to show that ψ is an isometry.

Now, by rank-nullity theorem, dim(ker(A)) = dim(Im(A)⊥) = dim(V) −
dim(Im(A)). Now, pick any isometry ψ and define U : V→ V by

U(v1 + v2) = φ(v1) + ψ(v2).

And hence, we have just shown that

A = U ◦
√
A∗A.

This U is an isometry, and it is surjective, hence it is injective, i.e, it is unitary.
Similarly, if we start with the adjoint of A, then we will end up with

A =
√
AA∗ ◦ Û ,

where (̂U) is also unitary. So...
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Theorem 17.0.1. For any A : V
linear−→ V, there exists a unitary U1 : V

linear−→ V

such that A =
√
AA∗ ◦ U1 and there exists a unitary U2 : V

linear−→ V such that
A = U2 ◦

√
A∗A.

Now, if we think back to complex numbers where we have z = |z|eiθ, this is
the analog of that, but in matrices and operators. Hence it makes sense to call
this decomposition the polar decomposition of A.

But there’s more to the story. It turns out that we can use the same U for
U1 and U2. Here’s the proof:

Proof.

A = U ◦
√
A∗A =

(
U ◦
√
A∗AU∗

)
U = NU .

Recognize that

N 2 = (UA∗)(AU∗) = U
√
A∗AU∗U

√
A∗AU∗ = AA∗,

which says N is exactly
√
A∗A. So,

A = NU =
√
A∗AU =⇒ A = U

√
A∗A =

√
AA∗U .

So we can use the same unitary in the polar decomposition. But note that the
unitary U itself is not necessarily unique. U is only unique if A is invertible.



Chapter 18

Singular value
decomposition

Now, using our results from the polar decomposition of operators, we can imag-
ine a case for A a square matrix. Then, A = U

√
A∗A as before, where

√
A∗A

is non-negative, self-adjoint, normal, etc. And so, we can write A as

A = U
(
ÛDÛ∗

)
where D is a diagonal matrix. This says that

A = (UÛ)DÛ−1 = U1DU2

and

D =

s1

. . .

sk


where si’s are exactly the eigenvalues of

√
A∗A. They are also called the sin-

gular values of A. And thus, this is the Singular Value Decomposition
(SVD) for square matrices.

The following statements of the singular value decomposition theorem are
equivalent:

1. For any matrix A ∈ Mn×n, we can always find an orthonormal basis
v1, . . . , vn such that A(v1), . . . ,A(vn) are orthogonal.

2. For any matrix A ∈ Mn×n, there exists a unitary matrix U ∈ Mn×n (whose
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columns are v1, . . . , vn) such that

A ◦ U = A
[
v1 . . . vn

]
=
[
Av1 . . . Avn

]
=
[
z1 . . . zn

]︸ ︷︷ ︸
Unitary

◦

α1

. . .

αn


where αi’s are nonnegative numbers that scale the columns of the unitary
matrix in front of it.

3. Equivalently, A can be written as

A =W ◦

α1

. . .

αn

 ◦ U† (18.1)

It is easy to see that the αi’s in the equivalent statements of the theorem are
exactly the singular values of A. Suppose that A − U1DU2 where D ≥ 0 and
U1,U2 are unitary matrices. Then A† = U†2DU

†
1 . Thus,

A†A = U†2D2U2 = (U†2DU2)2 ≥ 0.

In other words,

√
A†A = U†2DU2

and

√
AA† = U1DU†1

or that
√
A†A and

√
AA† are unitarily equivalent, thus have the same eigen-

properties.

18.1 Singular Value Decomposition for non-square
matrices

What ifA is not a square matrix? What would change? Suppose thatA ∈ M4×7.
A clever solution to this “problem” is to actually turn A into a square matrix
by filling in zeros. Let

Â =

[
A
0

]
7×7

.
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Now, we have the following maps:

A : C7 → C4 (18.2)

Â : C7 → C7 (18.3)

Suppose v1, . . . , vn form an orthonormal basis for C7 such that

Â
[
v1 . . . v7

]︸ ︷︷ ︸
U

=

[
A
0

]
7×7

[
v1 . . . v7

]︸ ︷︷ ︸
U

=

[(
Av1

0

)
. . .

(
Av7

0

)]
,

by SVD for square matrices. Then we know that Âv1, . . . , Âv7 are orthogonal
exactly when Av1, . . . ,Av7 are orthogonal. So we have

AU =
[
Av1 . . . Av7

]
4×7

The columns of the last matrix are orthogonal to each other. But notice that
there are seven columns while each column has only four entries. This means
there are a lot of zeros. So if we apply some permutation (which is also a unitary
operation), then

A ◦ U ◦ Permutation =

[
W4×4︸ ︷︷ ︸
Unitary

04×3
]

4×7



α1

α2

α3

α4

0
0

0


.

And so, we get:

A4×7 = U1

[
S4×7 0

]
U2.

We can do a similar thing for A “tall.” But what are these αi’s again? Suppose
A is 4× 7 again, then we know that A = U1DU2 where

D =



α1

α2

α3

α4

0
0

0


=
[
S 0

]
.

Thus,

D†D =

[
S2 0
0 0

]
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and

DD† =
[
S2
]
.

So, again, A†A ∼unitarily AA† and
√
A†A ∼unitarily

√
AA† again, and αi’s are

exactly the singular values of A.

In fact, using the same recipe here we can derive polar decomposition theo-
rem for non-square matrices.

18.2 Singular values and approximation

The singular value decomposition theorem has many amazing applications. One
of the most significant consequences of this theorem is called the “low-rank ap-
proximation,” which is widely used in image processing. So what is “low-rank
approximation”? Here’s the statement of the problem:

Prove that the distance (measured via Frobenius/Hilbert-Schmidt norm) from
a given matrix A ∈ Mn of rank m to the nearest n × n matrix of rank k (not
exceeding m), is the square root of the sum of the squares of the smallest n− k
singular values of A.

We shall give a sketch of the proof, in a few steps.

Proof. Let A be given. By SVD, we write A = U1DU2. Let si denote the
singular values of A, in decreasing order from si to sn.

1. Recall the Hilbert-Schmidt/Frobenius norm:

‖A‖HS =
√

tr(A†A)

=

√
tr
(

(U†2D†U
†
1 )(U1DU2)

)
=

√
tr
(
U†2D†DU2

)
=

√
tr
(
D†DU2U†2

)
because tr(AB) = tr(BA)

=
√

tr(D†D)

=
√∑

s2
i .
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2. Let F be an n× n matrix of rank k. Given A ∈ Mn, we observe that

‖A − F‖HS = ‖U1D − U2 −F‖HS
=
∥∥∥U1

(
(D − U†1FU

†
2 )
)
U2

∥∥∥
HS

=
∥∥∥D − U†1FU†2∥∥∥

HS

because Frobenius norm is unitarily invariant.

3. Suppose F is such that

T = U1FU2 =


s1

. . .

sk
0

 .
Then we have

‖A − F‖HS =

∥∥∥∥∥∥∥∥∥∥


s1

. . .

. . .

sn

−

s1

. . .

sk
0


∥∥∥∥∥∥∥∥∥∥
HS

=

√√√√ n∑
i=n−k+1

s2
i .

So, we have found a matrix of rank k such that its distance to A satisfies
the condition. This means the closet matrix to A, called B, must be such
that

‖A − B‖HS ≤

√√√√ n∑
i=n−k+1

s2
i .

4. To show ‖A − B‖HS is indeed
√∑n

i=n−k+1 s
2
i , what we need to show next

is that

‖A − B‖HS ≥

√√√√ n∑
i=n−k+1

s2
i .

To do this, let us take a little detour. In one of the problems at the end
of the text, we will show that suppose that P ∈ L(V) is a projection with
range W, for each v ∈ V,P(v) is the element of W that is closest to v.
The proof turns out to be very simple.

Proof. First, we write z = PW (z) + (I − PW )(z), then it follows that

‖z‖2 = ‖PW (z)‖2 + ‖(I − PW )(z)‖2
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by orthogonality. Now, since PW (z) ∈ W, and that ‖(I − PW )(z)‖2 is
the smallest distance from “the tip of z to any point in W” (a proof is
required but a simple picture can go a long way), PW (z) is an element of
W that is the closest to z.

Now, back to our problem. Let the closest admissible matrix to A be B.
Consider under SVD on A:∥∥∥∥∥∥∥
s1

. . .

sn

−
 | |
c1 . . . cn
| |


∥∥∥∥∥∥∥
HS

=

∥∥∥∥∥∥
 | |
snen . . . snen
| |

∥∥∥∥∥∥
HS

=

√√√√ n∑
i=1

‖siei − ci‖HS .

Consider the subspace W spanned by the columns ci’s. We know that
since B is admissible, this is a k-dimensional subspace. From the little
proof, we also know that the closest siei to ci is to set PW (siei) = ci.
And so we have√√√√ n∑

i=1

‖siei − PW (siei)‖HS =

√√√√ n∑
i=1

‖(I − PW )(siei)‖HS

But notice that to make this quantity as small as possible, we need
all the weights on si=n−k+1, . . . , sn. In this scenario, let us set W =
span(ei=n−k+1, . . . , en). Then the above expression can be written as√√√√ n∑

i=1

s2
i −

k∑
i=1

s2
i =

√√√√ n∑
i=n−k+1

s2
i .

But notice that this is the smallest we can make ‖A − B‖HS , which means
we have

‖A − B‖HS ≥

√√√√ n∑
i=n−k+1

s2
i .

5. Putting everything together, we have√√√√ n∑
i=n−k+1

s2
i ≤ ‖A− B‖HS ≥

√√√√ n∑
i=n−k+1

s2
i .

Thus, for such an admissible matrix B, it must be true that

‖A − B‖HS ≥

√√√√ n∑
i=n−k+1

s2
i
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Chapter 19

Problems and Solutions

19.1 Problem set 1 (under corrections)

Problem. 1. Equivalent formulations of directness of a subspace sum:
Suppose that V1,V2 . . . ,V315 are subspaces of a vector space W. Argue that
the following claims are equivalent.

1. The subspace sum V1 + V2 + · · ·+ V315 is direct.

2. If xi ∈ Vi and x1 + x2 + · · ·+ x315 = 0W, then xi = 0W, for every i.

3. If xi, yi ∈ Vi and x1 + x2 + x3 + · · · + x315 = y1 + y2 + y3 + · · · + y315,
then xi = yi, for every i.

4. For any i, no non-null element of Vi can be express as a sum of the
elements of the other Vj ’s.

5. For any i, no non-null element of Vi can be expressed as a sum of the
elements of the preceding Vj ’s.
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Problem. 2. Sub-sums of direct sums are direct: Suppose that V1,V2, . . . ,V315

are subspaces of a vector space W, and the subspace sum V1 + V2 + · · ·+ V315

is direct.

1. Suppose that for each i, Zi is a subspace of Vi. Argue that the subspace
sum Z1 + Z2 + . . .Z315 is direct.

2. Argue that the sum V2 + V5 + V7 + V12 is also direct.
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Problem. 3. Associativity of directness of subspace sums: Suppose that

Y,V1,V2, . . . ,V5,U1,U2, . . . ,U12,Z1,Z2, . . . ,Z4,X1,X2, . . . ,X53

are subspaces of a vector space W. Argue that the following claims are equiv-
alent.

1. The subspace sum

Y + V1 + V2 + · · ·+ V5 + U1 + U2 + · · ·+ U12 + Z1 + Z2 + · · ·+ Z4 + X1 + X2 + · · ·+ X53

is direct.

2. The subspace sums

[V :=] V1 + V2 + · · ·+ V5

[U :=] U1 + U2 + · · ·+ U12

[Z :=] Z1 + Z2 + · · ·+ Z4

[X :=] X1 + X2 + · · ·+ X53

Y + V + U + X + Z

are all direct.
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Problem. 4. Direct sums preserve linear independence: Suppose that
U,V,W are subspaces of a vector space Z, and the sum U,V,W is direct.

1. Suppose that U1, U2, . . . , U13 is a linearly independent list in U, V1, V2, . . . , V6

is a linearly independent list in V, and W1,W2, . . . ,W134 is a linearly in-
dependent list in W. Argue that the concatenated list

U1, U2, . . . , U13, V1, V2, . . . , V6,W1,W2, . . . ,W134

is linearly independent.

2. Suppose that U1, U2, . . . , U13 is a basis of U, V1, V2, . . . , V6 is a basis of V,
and W1,W2, . . . ,W134 is a basis of W. Argue that the concatenated list

U1, U2, . . . , U13, V1, V2, . . . , V6,W1,W2, . . . ,W134

is a basis of U⊕V ⊕W.
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Problem. 5. Suppose that x1, x2, . . . , x14 are non-null elements of a linear
space W.

1. Argue that the following claims are equivalent.

(a) x1, x2, . . . , x14 are linearly independent.

(b) The subspace sum

span(x1) + span(x2) + · · ·+ span(x14)

is direct.

2. Argue that the following claims are equivalent.

(a) x1, x2, . . . , x14 is a basis of W.

(b) W = span(x1)⊕ span(x2)⊕ · · · ⊕ span(x14)
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19.2 Problem set 2

Problem. 1. Finite unions of subspaces are rarely a subspace
Suppose that W1,W2, . . . ,Wn are subspaces of a vector space V. Prove that
the following are equivalent:

1. W1 ∪W2 ∪ · · · ∪Wn is a subspace of V.

2. One of the Wi’s contains all the others.

Solution. 1.

• [1. =⇒ 2.] : Suppose 2. is false and define

S =

n0⋃
i=1

Wi

a subspace of V, where none of the Wi’s ≺ V contains all the others, and
n0 is minimal. If n0 = 1, then the implication 1. =⇒ 2. is true because
W1 contains itself. Therefore, in order for this implication to fail, n0 ≥ 2.

Because n0 is minimal, S cannot be obtained from a union of less than
n0 of the Wi’s. Therefore, each Wi contains an element wi that does not
belong to any other Wj ’s.

Take w2 ∈ W2 \W1 and w1 ∈ W1 such that w1 /∈
⋃n0

j 6=1 Wj . It fol-
lows that w1, w2 ∈ S because W1,W2 ⊆ S. And since S is a subspace,
mw1 + w2 ∈ S for any m ∈ C by closure under addition.

Consider a collection of n0 linear combinations of w1 and w2, defined as

T = {w1 + w2, 2w1 + w2, . . . , n0w1 + w2} ⊆ S.

Consider a typical element of T : nw1+w2 ∈ S, n ∈ {1, 2, . . . , n0}. Suppose
nw1 + w2 ∈W1. By closure under addition,

(nw1 + w2)− nw1 = w2 ∈W1.

But this contradicts the choice of w2. Therefore, nw1 +w2 /∈W1, for any
n ∈ {1, 2, . . . , n0}. It follows that T ⊆

⋃n0

i=2 Wi.

By construction, T has n0 elements, while
⋃n0

i=2 Wi has (n0−1) Wi’s. By
the pigeonhole principle, a Wk of W2, . . . ,Wn0

must contain nw1 + w2

for two distinct values of n. Let these values be na and nb. By closure
under addition, we have

(naw1 + w2)− (nbw1 + w2) = (na − nb)w1 ∈Wk.
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But since na 6= nb, w1 ∈ Wk. This contradicts our initial choice of w1

and thus rules out the possibility that the implication 1. =⇒ 2. fails to
hold. Therefore, the implication 1. =⇒ 2. must be true.

• [2. =⇒ 1.] : Without loss of generality, assume that W1 contains all the
other Wj ’s. It follows that

n0⋃
i=1

Wi = W1.

Since W1 is a subspace of V,
⋃n0

i=1 Wi is also a subspace of V. Therefore,
2. =⇒ 1. must hold.
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Problem. 2. Images of pre-images and pre-images of images: Is there
a 3× 3 matrix A such that

W :=


xy

0

∣∣∣∣x, y ∈ C


is an invariant subspace for A, and

A
[
A−1[W]

]
( W ( A−1 [A[W]]?

Justify your answer.

Solution. 2.

First, we observe that dim(W) = 2, because a basis set of W,
1

0
0

 ,

0
1
0

 ,

has two elements. Next, consider the vector space C3 over the complex numbers.
Since W is a subspace and any element of W is contained in C3 by construction,
W ≺ C3. In fact, W ( C3 because C3 3 (0 0 1)> /∈W

By the condition A
[
A−1[W]

]
( W ( A−1 [A[W]], it must be true that

dim
(
A
[
A−1[W]

])
< dim(W) < dim

(
A−1 [A[W]]

)
.

Now, since dim(W) = 2 and A is a 3× 3 matrix (i.e., neither dim(ker(A)) nor
dim(Im(A)) can exceed 3(†)), it is required that dim

(
A
[
A−1[W]

])
≤ 1 and

dim
(
A−1 [A[W]]

)
= 3.

Because W is invariant under A, A[W] ⊆ W. It follows that A−1 [A[W]] ⊆
A−1[W]. Therefore,

3 = dim
(
A−1 [A[W]]

)
≤ dim

(
A−1[W]

)
.

It follows, by fact (†), that

3 ≤ dim
(
A−1[W]

)
≤ 3,

which implies dim
(
A−1[W]

)
= 3 = dim(C3). Consider v ∈ A−1[W]. v can

have the form (x y z)>, x, y, z ∈ C, so v ∈ C3. This implies A−1[W] ⊆ C3. But
since their dimensions are both 3, A−1[W] = C3. It follows that

A
[
A−1[W]

]
= A[C3] ⊇ A[W],
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where the second relation comes from the fact that W is a subspace of C3.
Hence,

1 ≥ dim
(
A
[
A−1[W]

])
≥ dim (A[W]) ,

which implies dim(A[W]) = 0 or 1.

So, such a 3× 3 matrix A that satisfies the given condition is

A =

1 0 0
0 0 0
0 0 0

 .

First, W is invariant under A because take any (x y 0)> ∈W, A
(
(x y 0)>

)
=

(x 0 0)> ∈W. This implies A[W] ⊆ [W] (a).

Second, it is easy to see that the pre-image of W under A is C3, since take
any (x y z)> ∈ C3, we have A

(
(x y z)>

)
= (x 0 0)> ∈W. But observe that

Im(A) is a proper subset of W, because any (x y 0)> ∈W with y 6= 0 is not
contained in Im(A). This implies A

[
A−1[W]

]
( W (b).

Lastly, as we have pointed out, because dim
(
A−1 [A[W]]

)
= 3 andA−1 [A[W]] ≺

C3, A−1 [A[W]] = C3 ) W (c).

From (a), (b), (c), we see that this 3× 3 matrix A works as desired.
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Problem. 3. Invariant subspaces form a “lattice”:

1. Argue that Lat(L) is closed under intersection; i.e., that the intersection
of any two invariant subspaces for L is also an invariant subspace for L.

2. Argue that Lat(L) is closed under subspace sums; i.e., that a subspace
sum of two invariant subspaces for L is again an invariant subspace for L.

3. Show that an image under L of an invariant subspace for L is again an
invariant subspace for L.

4. Show that a pre-image under L of an invariant subspace for L is again an
invariant subspace for L.

Solution. 3.

1. Let subspaces V,W ∈ Lat(L) be given. Lat(L) is closed under intersec-
tion if V ∩W ∈ Lat(L). Consider u ∈ V ∩W, then u ∈ V and u ∈W.
It follows that L(u) ∈ L[V] and L(u) ∈ L[W].

Now, since L[V] ⊆ V and L[W] ⊆W because W,V ∈ Lat(L), we have
L(u) ∈ V and L(u) ∈W, which implies L(u) ∈ V ∩W. Since this impli-
cation holds for any u ∈ V ∩W, L[V ∩W] ⊆ V ∩W. Therefore, V ∩W
is invariant under L; i.e., W∩V ∈ Lat(L). This completes the argument.

2. Let subspaces V,W ∈ Lat(L) be given. Lat(L) is closed under subspace
sums if V +W ∈ Lat(L). Consider v ∈ V, w ∈W. Then v+w ∈ V +W.
Next, consider l ∈ L[U + W] given by

l = L(v + w) = L(v) + L(w) = v′ + w′,

where v′ ∈ V and w′ ∈ W because V,W are invariant under L. So
l ∈ V +W. This implies L[V +W] ⊆ V +W; i.e., Lat(L) is closed under
subspace sums.

3. Let V ∈ Lat(L) be given. By definition, L[V] ⊆ V. It follows that
L [L[V]] ⊆ L[V]. So, L[V] is invariant under L.

4. Let W ∈ Lat(L) be given. Claim: L
[
L−1[W]

]
⊆ L−1[W].

It follows from the definition of the pre-image of W under L : V → W
that L−1[W] = {v ∈ V|L(v) ∈W}. This implies L

[
L−1[W]

]
⊆W (i).

Next, consider w ∈W ⊆ V. By definition, L−1 [L[W]] = {v ∈ V|L(v) ∈
L[W]}, which implies w ∈ L−1[L[W]], because L(w) ∈ L[W]. Therefore,
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W ⊆ L−1 [L[W]] (ii).

Moreover, because W ∈ Lat(L), L[W] ⊆W (iii).

From (i), (ii), and (iii) we have

L
[
L−1[W]

] (i)

⊆ W
(ii)

⊆ L−1 [L[W]]
(iii)

⊆ L−1[W].

Therefore, L
[
L−1[W]

]
⊆ L−1[W], verifying the claim.
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Problem. 4. Cyclic invariant subspaces For a given L ∈ L(V) and a fixed
v0 ∈ V, define

P(L, v0) :=

{(
a0L0 + a1L1 + a2L2 + · · ·+ akLk

)
(v0)

∣∣∣∣k ≥ 0, ai ∈ C

}
.

1. Argue that P(L, v0) is a subspace of V.

2. Argue that P(L, v0) is invariant under L.

3. Argue that P(L, v0) is the smallest invariant subspace for L that con-
tains v0. We refer to P(L, v0) as the cyclic invariant subspace for L
generated by v0.

4. Argue that P(L, v0) is 1-dimensional exactly when v0 is an eigenvector of
L.

5. Argue that a subspace W of V is invariant under L exactly when it is a
union of cyclic invariant subspaces for L.

Solution. 4.

1. Consider a typical element P (L, v0) ∈ P(L, v0). Since L ∈ L(V), Li(v0) ∈
V for all i and v0 ∈ V. By closure under scalar multiplication and addi-
tion, for any ai ∈ C, v0 ∈ V, and k ≥ 0,

P (L, v0) =

k∑
i=0

aiLi(v0) ∈ V.

Therefore P(L, v0) ⊆ V (i).

With ai = 0 for all i, P(L, v0) 3 P (L, v0) =
∑k
i=1 0 · Li(v0) = 0P. So

P(L, v0) contains the null element (ii).

Consider P1(L, v0) =
∑k
i=0 biLi(v0) and P2(L, v0) =

∑l
j=0 cjLj(v0), with

bi, cj ∈ C for all i, j. Without loss of generality, assume that k ≥ l ≥ 0. It
is clear that P(L, v0) is closed under addition because,

P1(L, v0) + P2(L, v0) =

k∑
i=0

biLi(v0) +

l∑
j=0

cjLj(v0)

=

k∑
i=0

biLi(v0) +

k∑
i=0

ciLi(v0) with ci = 0 for all i > l

=

k∑
i=0

(bi + ci)Li(v0)

=

k∑
i=0

diLi(v0) ∈ P(L, v0),
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where di = bi + ci ∈ C. (iii).

It is also clear that P(L, v0) is closed under scalar multiplication because
given µ ∈ C,

µP1(L, v0) = µ

k∑
i=0

biLi(v0) =

k∑
i=0

µbiLi(v0) =

k∑
i=0

eiLi(v0) ∈ P(L, v0),

where ei = µbi ∈ C (iv).

By (i), (ii), (iii), and (iv), P(L, v0) is a subspace of V.

2. Let P (L, v0) be given. It suffices to show that L(P (L, v0)) ∈ P(L, v0), for
all P (L, v0) ∈ P(L, v0).

L(P (L, v0)) = L

(
k∑
i=0

aiLi(v0)

)
=

k∑
i=0

aiLi+1(v0),

where ai ∈ C and k ≥ 0. Define new coefficients bj = ai where j = i + 1
and b0 = 0, then

L(P (L, v0)) =

k+1∑
j=1

bjLj(v0) =

k+1∑
j=0

bjLj(v0) ∈ P(L, v0).

Therefore, L [P(L, v0)] ⊆ P(L, v0); i.e., P(L, v0) is invariant under L.

3. Let P(L, v0) be given. P(L, v0) is an invariant subspace under L that
contains v0 by definition. Suppose Q(L, v0) is some invariant subspace
under L that also contains v0. It suffices to show P(L, v0) ⊆ Q(L, v0) for
any such Q(L, v0).

Consider Lj(v0) for some j ≥ 0. Lj(v0) ∈ P(L, v0) by definition. We
claim that Lj(v0) = q ∈ Q(L, v0) for any non-negative j. Assume that
this is true. The base case where j = 0 is true since v0 ∈ Q(L, v0). The
inductive case is also true because

L(j+1)(v0) = L(Lj(v0)) = L(q) ∈ Q(L, v0)

where the last relation comes from the fact that Q(L, v0) is invariant under
L. Therefore, by the principle of induction, Lj(v0) ∈ Q(L, v0) for any non-
negative j. This implies P(L, v0) ⊆ Q(L, v0) for any such Q(L, v0). Thus
P(L, v0) must be the smallest invariant subspace under L that contains
v0.
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4. (a) ( =⇒ ) : Let a P(L, v0) be given such that dim(P(L, v0)) = 1. Con-
sider the subspace span(v0). We know that dim(span(v0)) = 1. Con-
sider v ∈ span(v0). Then v can be expressed as v = av0 where a ∈ C.
It follows immediately that v ∈ P(L, v0). Therefore, span(v0) ⊆
P(L, v0). But because dim(P(L, v0)) = 1 = dim(span(v0)), P(L, v0) =
span(v0); i.e., all elements of P(L, v0) are some scalar multiples of v0.

Now, it suffices to show L(v0) = λv0, where λ ∈ C. Consider
P (L, v0) = L0(v0) + L(v0) ∈ P(L, v0) = span(v0), v0 6= 0V. By
closure under addition,

(L0(v0)+L(v0))−v0 = (L0(v0)+L(v0))−L0(v0) = L(v0) ∈ span(v0).

This implies L(v0) = λv0 for some λ ∈ C; i.e., v0 is an eigenvector of
L.

(b) ( ⇐= ) : If v0 is an eigenvector of L, then Li(v0) = λiv0, where
λi ∈ C is the L’s v0-eigenvalue raised to the ith power. It follows
that a typical element of P(L, v0) is

P (λ, v0) =

k∑
i=0

aiLi(v0) =

(
k∑
i=0

aiλ
i

)
v0 = µv0,

where µ =
∑k
i=0 aiλ

i ∈ C. Therefore, P(L, v0) = span(v0); i.e.,
dim (P(L, v0)) = 1. This completes the argument.

5. (a) ( =⇒ ) : Let W ∈ Lat(L) be given. Then L[W] ⊆W. Let w1 ∈W
be given. We first show that Lk(w1) ∈W for all non-negative k by
induction. Assume that Lk(w1) = v1 ∈ W for all non-negative k
holds. The base case where k = 0 is true since L0(w1) = w1 ∈ W.
The inductive case is also true because

L(k+1)(w1) = L(Lk(w1)) = L(v1) ∈W.

By the principle of induction, Lk(w1) ∈W for all w1 ∈W and k ≥ 0
(†). Now, consider P ∈ P(L, w1). By the definition of P(L, w1), P
is a linear combination of L0(w1), . . . ,Lk(w1) for some k ≥ 0. So, by
(†), P ∈W. This implies P(L, w1) ⊆W.

We can repeat the argument above, starting with w2, w3, · · · ∈ W,
and conclude that P(L, w2) ⊆ W, P(L, w3) ⊆ W, and so on. This
means W contains a union of P(L, w1),P(L, w2),P(L, w3), . . . . More-
over, observe the fact that any element wn ∈W can be used to gen-
erate a P(L, wn) that is contained in the union of itself and the other
P(L, wm)’s, which is ultimately contained in W. Therefore, W is
itself a union of cyclic invariant subspaces for L.
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(b) ( ⇐= ) : Let W = P1 ∪ P2 ∪ · · · ∪ Pn be a subspace of V, where
Pi denotes P(L, vi) and vi is an arbitrary element of V. By problem
1, because P1 ∪ P2 ∪ · · · ∪ Pn is a subspace of V, a Pi, 1 ≤ i ≤ n,
must contain all the other Pj’s. Without loss of generality, assume
that such a Pi is P1. It follows that W = P1. By part 2. of this
problem, we know that P1 is invariant under L. Therefore, W is
invariant under L.
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Problem. 5. Invariant subspaces of commuting operators: Suppose
that linear functions L,M∈ L(V) commute; i.e.,

L ◦M =M◦L.

1. Argue that for any non-negative integer k, Im(Mk) and ker(Mk) are
invariant subspace for L.

2. Argue that every eigenspace of M is an invariant subspace for L.

3. By giving a general example (with justification, of course!) show that for
each n > 1 there are commuting matrices A and B in Mn such that

Lat(A) 6= Lat(B).

Solution. 5.

1. Because L◦M =M◦L, L◦Mk =Mk ◦L for any non-negative k. We can
verify this by a short proof by induction. Assume that L ◦Mk =Mk ◦ L
holds for any non-negative k. The base case where k = 0 is true, for
L ◦M0 = L ◦ I = I ◦ L =M0 ◦ L, where I is the identity operator. The
inductive case is also true because

L ◦Mk+1 = L ◦Mk ◦M =Mk ◦ L ◦M =Mk ◦M ◦ L =Mk+1 ◦ L.

Therefore, by the principle of induction, L ◦Mk =Mk ◦ L is indeed true
for all k ≥ 0.

(a) To show: L
[
Im(Mk)

]
⊆ Im(Mk).

Since L◦Mk =Mk ◦L, L◦Mk[V] =Mk ◦L[V]; i.e., L[Im(Mk)] =
Mk[Im(L)]. But since Im(L) ⊆ V (because L ∈ L(V)),

Mk[Im(L)] ⊆Mk[V] = Im(Mk).

It follows that L[Im(Mk)] ⊆ Im(Mk). So, Im(Mk) is an invariant
subspace for L.

(b) To show: L[ker(Mk)] ⊆ ker(Mk).

Since L ◦Mk =Mk ◦ L,

L ◦Mk[ker(Mk)] = {0V} =Mk ◦ L[ker(Mk)].

It follows that L[ker(Mk)] ⊆ ker(Mk). This completes the argument.
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2. Let Eλ, the eigenspace ofM associated with eigenvalue λ, be given. Con-
sider e ∈ Eλ, we have

M◦L(e) = L ◦M(e) = L(λe) = λL(e).

This implies L(e) ∈ Eλ. Since this relation holds for any e ∈ Eλ,
L[Eλ] ⊆ Eλ. Therefore, Eλ is an invariant subspace for L for any eigen-
value λ. This proves the claim that every eigenspace ofM is an invariant
subspace for L.

3. It suffices to find commuting matrices A and B such that there exists an
invariant subspace under A, J ∈ Lat(A), but J /∈ Lat(B).

For n = 2, consider

A =

(
0 0
0 0

)
, B =

(
1 0
0 0

)
.

A and B commute:(
0 0
0 0

)(
1 0
0 0

)
=

(
0 0
0 0

)
=

(
1 0
0 0

)(
0 0
0 0

)
Consider J = span{(1 1)>}. J ∈ Lat(A) since A[J] = {0} ⊆ J. However,
consider j = (1 1)> ∈ J, we have

B(j) =

(
1 0
0 0

)(
1
1

)
=

(
1
0

)
/∈ span{(1 1)>},

which implies J /∈ Lat(B). Therefore, Lat(A) 6= Lat(B).

Observe that we can give a more general example for any n > 1 based on
the 2 × 2 example above. Let A be an n × n zero matrix, and B be an
n× n matrix of the form

B =


1 0 . . . 0
0 0
...

. . .

0 0

 .

It is clear that A and B commute, since A is the zero matrix:

AB = [0]n×n = BA.

Consider j = (1 1 . . . 1)> ∈ J = span{(1 1 . . . 1)>} ⊆ Cn. It is clear
that B(j) = (1 0 . . . 0)> /∈ J but A(j′) = 0 ∈ J for any j′ ∈ J. So,
J ∈ Lat(A) but J /∈ Lat(B); i.e.,

Lat(A) 6= Lat(B).
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Problem. 6. Invariant subspace chains: Suppose that L ∈ L(V) and W
is an invariant subspace of L.

1. Argue that the following inclusions hold:

· · · ⊆ L3[W] ⊆ L2[W] ⊆ L[W] ⊆W ⊆ L−1[W] ⊆ L−2[W] ⊆ L−3[W] ⊆ . . .

Note that by Problem 3, all of the subspaces listed in the chain are invari-
ant under L.

2. Argue that the following implications hold:

Lk+1[W] = Lk[W] =⇒ Lm[W] = Lk[W] for any m ≥ k,

and

L−k[W] = L−(k+1)[W] =⇒ L−k[W] = L−m[W] for any m ≥ k,

and then explain why the chain in part 1 stabilizes in both directions, and
has at most dim(V) proper inclusions.

3. Argue that any subspace M that falls between two consecutive subspaces
in the chain shown in part 1. is also invariant under L.

Solution. 6.

1. (a) To show: · · · ⊆ L3[W] ⊆ L2[W] ⊆ L[W] ⊆W.

Assume that Lk+1[W] ⊆ Lk[W] for all k ≥ 0. The base case k = 0
is true because W is an invariant subspace under L. The inductive
case is also true because

Lk+2[W] = L[Lk+1[W]] ⊆ L[Lk[W]] = Lk+1[W],

where the second relation follows from assumption. By principle of
induction, · · · ⊆ L3[W] ⊆ L2[W] ⊆ L[W] ⊆W.

(b) To show: W ⊆ L−1[W] ⊆ L−2[W] ⊆ L−3[W] ⊆ . . . .

Assume that L−k[W] ⊆ L−k−1[W] for all k ≥ 0. The base case
where k = 0 is true: Given w ∈ W ⊆ V, L(w) ∈ W because W
is invariant under L. But since L−1[W] = {v ∈ V|L(v) ∈ W} and
L[W] ⊆W, w ∈ L−1[W]. Therefore, W ⊆ L−1[W] (i).

The inductive case is also true:

L−k−1[W] = L−1[L−k[W]] ⊆ L−1[L−k−1[W]] ⊆ L−k−2[W].

So by the principle of induction, W ⊆ L−1[W] ⊆ L−2[W] ⊆ . . . (ii).

From (i) and (ii),

· · · ⊆ L2[W] ⊆ L[W] ⊆W ⊆ L−1[W] ⊆ L−2[W] ⊆ . . .
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2. (a) Assume the hypothesis that Lk+1[W] = Lk[W] for some k ≥ 0. We
can prove by induction that Lk+j [W] = Lk[W] for all non-negative
j. The base case where j = 0 is true. The inductive case is also true
since:

Lk+j+1[W] = L[Lk+j [W]] = L[Lk[W]] = Lk+1[W] = Lk[W].

By the principle of induction, Lm[W] = Lk[W] must hold for any
m ≥ k ≥ 0 if Lk+1[W] = Lk[W].

(b) Assume that hypothesis that L−k[W] = L−(k+1)[W] for all k ≥ 0.
Also assume that L−k[W] = L−(k+j)[W] for all non-negative j. The
base case where j = 0 is true. In inductive case is also true since:

L−(k+j+1)[W] = L−1[L−(k+j)[W]

= L−1[L−k[W]]

= L−(k+1)[W]

= L−k[W].

By the principle of induction, L−k[W] = L−m[W] must hold for
m ≥ k if L−k[W] = L−(k+1)[W].

(c) It follows from part 1. that

· · · ≤ dim(L[W]) ≤ dim(W) ≤ dim(L−1[W]) ≤ . . .

Because dim(L−k[W]) ≤ dim(V) for any k ≥ 0, there exists an
L−h[W], h ≥ 0, that is an invariant subspace in the chain with the
highest dimension where h is minimal. It follows that dim(L−(h+1)[W]) =
dim(L−(h)[W]) is maximal. But because L−h[W] ⊆ L−(h+1)[W],
L−h[W] = L−(h+1)[W]. As a result, L−h[W] = L−j [W] for any
j ≥ h, which follows from (b). Therefore, the chain in part 1. stabi-
lizes in the “inclusion” direction.

A similar argument can be given to show that the chain in part 1. also
stabilizes in the “inclusion by” direction. Since 0 ≤ dim(Ll[W]) for
any l ≥ 0, there exists an Ll[W] in the chain with the lowest dimen-
sion but l is minimal. It follows that dim(L(l+1)[W]) = dim(Ll[W])
is minimal. But because L(l+1)[W] ⊆ Ll[W], L(l+1)[W] = Ll[W].
As a result, Lk[W] = Ll[W] for any k ≥ l, which follows from (a).
Therefore, the chain in part 1. stabilizes in the “inclusion by” direc-
tion as well.

We claim that for every proper inclusion, there is a dimension loss.
Revisiting L−h[W], we know that dim(L−h[W]) ≤ dim(V). Con-
sider the first proper inclusion:

. . .L−(h−j)[W] ( L−(h−j+1)[W] ⊆ · · · ⊆ L−h[W] ⊆ . . .
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This implies dim(L−(h−j)[W]) < dim(L−h[W]) ≤ dim(V). Suppose
dim(L−h[W]) = dim(V), i.e., maximal, then

dim(L−(h−j)[W]) ≤ dim(V)− 1.

By assuming equality is satisfied and consider the next proper inclu-
sion in the chain, a similar argument shows that the invariant sub-
space of interest has at most dim(V)− 2 dimensions. It follows that,
at the dim(V)th proper inclusion, the considered invariant subspace
has at most dim(V) − dim(V) = 0 dimensions; i.e. the subspace is
{0V}. At this point, no further proper inclusion is possible. There-
fore, the chain in part 1. has at most dim(V) proper inclusion.

3. Let L(k+1)[W] ⊆ M ⊆ Lk[W] be given for some nonnegative integer k.
M is a subspace. We have that

L[M] ⊆ L[Lk[W]] = L(k+1)[W] ⊆M(i).

Let L−h[W] ⊆ M ⊆ L−(h+1)[W] be given for some nonnegative integer
h. We have that

L[M] ⊆ L[L−(h+1)[W]] = L[L−1[L−h[W]]] ⊆ L[L−1[M]].

But because L−1[M] = {v ∈ V|L(v) ∈M}, L[L−1[M]] ⊆M. Therefore,
we have L[M] ⊆M(ii).

From (i) and (ii), M is invariant under L if M is a subspace that falls
between two consecutive subspaces in the chain shown in part 1.



19.3. PROBLEM SET 3 119

19.3 Problem set 3

Problem. 1. Suppose that V1,V2,V3 are non-trivial vector spaces, and for
each i, j ∈ {1, 2, 3},

Lij : Vj
linear−→ Vi.

1. Argue that L11 L12 L13

L21 L22 L23

L31 L32 L33


×

is a linear function.

2. Argue that every linear function T : V1 ×V2 ×V3 → V1 ×V2 ×V3 can
be expressed as L11 L12 L13

L21 L22 L23

L31 L32 L33


×

,

with Lij : Vj
linear−→ Vi, in exactly one way.

3. If the functionM11 M12 M13

M21 M22 M23

M31 M32 M33


×

: V1 ×V2 ×V3 → V1 ×V2 ×V3

is defined similarly, find (with proof) the block-matrix form of the func-
tions

2

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

+ 3

M11 M12 M13

M21 M22 M23

M31 M32 M33


×

and L11 L12 L13

L21 L22 L23

L31 L32 L33


×

◦

M11 M12 M13

M21 M22 M23

M31 M32 M33


×

.
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Solution. 1.

1. (a) It suffices to show that

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

satisfies the linearity con-

ditions.

Consider

a1

a2

a3

 ,

b1b2
b3

 ∈ V1 ×V2 ×V3

where aj , bj ∈ Vj for j ∈ {1, 2, 3}. By definition,

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

a1

a2

a3

+

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

b1b2
b3


=

L11(a1) + L12(a2) + L13(a3)
L21(a1) + L22(a2) + L23(a3)
L31(a1) + L32(a2) + L33(a3)

+

L11(b1) + L12(b2) + L13(b3)
L21(b1) + L22(b2) + L23(b3)
L31(b1) + L32(b2) + L33(b3)


=

L11(a1) + L12(a2) + L13(a3) + L11(b1) + L12(b2) + L13(b3)
L21(a1) + L22(a2) + L23(a3) + L21(b1) + L22(b2) + L23(b3)
L31(a1) + L32(a2) + L33(a3) + L31(b1) + L32(b2) + L33(b3)


=

[L11(a1) + L11(b1)] + [L12(a2) + L12(b2)] + [L13(a3) + L13(b3)]
[L21(a1) + L21(b1)] + [L22(a2) + L22(b2)] + [L23(a3) + L23(b3)]
[L31(a1) + L31(b1)] + [L32(a2) + L32(b2)] + [L33(a3) + L33(b3)]

 , by the linearity of Lij

=

L11(a1 + b1) + L12(a2 + b2) + L13(a2 + b2)
L21(a1 + b1) + L22(a2 + b2) + L23(a2 + b2)
L31(a1 + b1) + L32(a2 + b2) + L33(a2 + b2)


=

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

a1 + b1
a2 + b2
a3 + b3


=

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

a1

a2

a3

+

b1b2
b3

 .

Therefore, the additivity condition is satisfied.

(b) Next, we consider the scaling condition. Let c ∈ C be given,
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L11 L12 L13

L21 L22 L23

L31 L32 L33


×

c
a1

a2

a3


=

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

ca1

ca2

ca3


=

L11(ca1) + L12(ca2) + L13(ca3)
L21(ca1) + L22(ca2) + L23(ca3)
L31(ca1) + L32(ca2) + L33(ca3)


=

cL11(a1) + cL12(a2) + cL13(a3)
cL21(a1) + cL22(a2) + cL23(a3)
cL31(a1) + cL32(a2) + cL33(a3)

 , by the linearity of Lij

=c

L11(a1) + L12(a2) + L13(a3)
L21(a1) + L22(a2) + L23(a3)
L31(a1) + L32(a2) + L33(a3)

 .

Therefore, the scalar multiplication condition is also satisfied.

From (a) and (b),

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

is a linear function.
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2. (a) Existence: Let Πi be a coordinate projection on V1 ×V2 ×V3 onto
Vi defined in Definition 0.2. Let γi be a coordinate injection of Vi

into V1 ×V2 ×V3 also defined in Definition 0.2.

Consider the block-matrix L×,

L× =

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

.

Let the linear function T : V
linear−→ V be given. Let each Lij : Vj

linear−→
Vi be defined as

Lij = Πi ◦ T ◦ γj
∣∣∣∣
Vj

.

Then we have

L× =

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

=


Π1 ◦ T ◦ γ1

∣∣∣∣
V1

Π1 ◦ T ◦ γ2

∣∣∣∣
V2

Π1 ◦ T ◦ γ3

∣∣∣∣
V3

Π2 ◦ T ◦ γ1

∣∣∣∣
V1

Π2 ◦ T ◦ γ2

∣∣∣∣
V2

Π2 ◦ T ◦ γ3

∣∣∣∣
V3

Π3 ◦ T ◦ γ1

∣∣∣∣
V1

Π3 ◦ T ◦ γ2

∣∣∣∣
V2

Π3 ◦ T ◦ γ3

∣∣∣∣
V3


×

.

Consider
(
w1 0V 0V

)> ∈ V1 ×V2 ×V3 with w1 ∈ V1.
Π1 ◦ T ◦ γ1

∣∣∣∣
V1

Π1 ◦ T ◦ γ2

∣∣∣∣
V2

Π3 ◦ T ◦ γ1

∣∣∣∣
V3

Π2 ◦ T ◦ γ1

∣∣∣∣
V1

Π2 ◦ T ◦ γ2

∣∣∣∣
V2

Π3 ◦ T ◦ γ2

∣∣∣∣
V3

Π3 ◦ T ◦ γ1

∣∣∣∣
V1

Π3 ◦ T ◦ γ2

∣∣∣∣
V2

Π3 ◦ T ◦ γ3

∣∣∣∣
V3


×

w1

0V

0V



=


Π1 ◦ T ◦ γ1

∣∣∣∣
V1

(w1)

Π2 ◦ T ◦ γ1

∣∣∣∣
V1

(w1)

Π3 ◦ T ◦ γ1

∣∣∣∣
V1

(w1)



=

Π1 ◦ T
(
w1 0V 0V

)>
Π2 ◦ T

(
w1 0V 0V

)>
Π3 ◦ T

(
w1 0V 0V

)>
 .
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Let T
((
w1 0V 0V

)>)
be
(
a b c

)> ∈ V1 ×V2 ×V3. By defi-

nition,Π1 ◦ T
(
w1 0V 0V

)>
Π2 ◦ T

(
w1 0V 0V

)>
Π3 ◦ T

(
w1 0V 0V

)>


=

Π1

((
a b c

)>)
0V

0V

+

 0V

Π2

((
a b c

)>)
0V

+

 0V

0V

Π3

((
a b c

)>)


=

 a
0V

0V

+

0V

b
0V

+

0V

0V

c

 =

ab
c

 = T

w1

0V

0V


Therefore,

L×

w1

0V

0V

 = T

w1

0V

0V

 .

In general, the equality above also holds for any v = w1+w2+w3 ∈ V
with wi ∈ Vi, since v can be expressed as

v =

w1

0V

0V

+

0V

w2

0V

+

0V

0V

w3

 ,

and the linearity of L× and T ensures that L×(v) = T (v). Hence, T
can be expressed as the matrix L× whose elements Lij ’s are defined
as

Lij = Πi ◦ T ◦ γj
∣∣∣∣
Vj

.

.

(b) Uniqueness: We observe that all of the steps in the “Existence part”
are reversible. This means if we were given the linear map T , we

could consider applying T to
(
w1 0V 0V

)>
,
(
0V w2 0V

)>
,

and
(
0V 0V w3

)> ∈ V; and by reversing the steps in part (a), we
know that T can be expressed as a 3×3 block-matrix whose elements

must have the form Πi ◦ T ◦ γj
∣∣∣∣
Vj

= Lij .

From parts (a) and (b), the linear function T can be expressed as the
matrix L× in exactly one way.
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3. Let

L :=

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

: V
linear−→ V

and

M :=

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

: V
linear−→ V

be given.

(a) Let L be the matrix of the linear function T above and M be the

matrix of a linear function K : V
linear−→ V. Consider the expression

2Lij + 3Mij . Let Lij be constructed as in Part 1 for the linear
function T . Let M be constructed similarly for K. Then, we have

2Lij + 3Mij = 2Πi ◦ T ◦ γj
∣∣∣∣
Wj

+ 3Πi ◦ K ◦ γj
∣∣∣∣
Wj

= Πi ◦ 2T ◦ γj
∣∣∣∣
Wj

+ Πi ◦ 3K ◦ γj
∣∣∣∣
Wj

= Πi ◦

(
2T ◦ γj

∣∣∣∣
Wj

+ 3K ◦ γj
∣∣∣∣
Wj

)

= Πi ◦ (2T + 3K) ◦ γj
∣∣∣∣
Wj

= (2T + 3K)ij , by definition.

This shows that each element of the matrix of the linear function
(2L+ 3K) is given by

(2T + 3K)ij = 2Lij + 3Mij

i.e.,

2

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

+ 3

M11 M12 M13

M21 M22 M23

M31 M32 M33


×

=

2L11 + 3M11 2L12 + 3M12 2L13 + 3M13

2L21 + 3M21 2L22 + 3M22 2L23 + 3M23

2L31 + 3M31 2L32 + 3M32 2L33 + 3M33


×

.
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(b) Let T , Mij , K, and Lij be defined similarly: L is the matrix of
the linear function T and M is the matrix of the linear function K.
Consider the expression

∑3
k=1 Lik ◦Mkj , we have

3∑
k=1

Lik ◦Mkj =

3∑
k=1

Πi ◦ T ◦ γk
∣∣∣∣
Wk

◦Πk ◦ K ◦ γj
∣∣∣∣
Wj

=

3∑
k=1

Πi ◦ T ◦

(
γk

∣∣∣∣
Wk

◦Πk

)
◦ K ◦ γj

∣∣∣∣
Wj

= Πi ◦ T ◦

(
3∑
k=1

γk

∣∣∣∣
Wk

◦Πk

)
◦ K ◦ γj

∣∣∣∣
Wj

.

Consider v =
(
w1 w2 w2

)> ∈ V such that wi ∈ Wi for i ∈
{1, 2, 3}. We can show that the summation in the expression above
is simply the identity function:(

3∑
k=1

γk

∣∣∣∣
Wk

◦Πk

)
(v) = γ1

∣∣∣∣
W1

◦Π1(v) + γ2

∣∣∣∣
W2

◦Π2(v) + γ3

∣∣∣∣
W3

◦Π3(v)

= γ1(w1) + γ2(w2) + γ3(w3)

=

w1

0V

0V

+

0V

w2

0V

+

0V

0V

w3


=

w1

w2

w3


= v.

Therefore,

3∑
k=1

Lik ◦Mkj = Πi ◦ T ◦ K ◦ γj
∣∣∣∣
Wj

= Πi ◦ (T ◦ K) ◦ γj
∣∣∣∣
Wj

= (T ◦ K)ij .

This shows that each element of the matrix of the linear function
(T ◦ K) is given by

(T ◦ K)ij =

3∑
k=1

Lik ◦Mkj
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which gives the full block-matrix form:L11 L12 L13

L21 L22 L23

L31 L32 L33


×

◦

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

=

∑3
k=1 L1k ◦Mk1

∑3
k=1 L1k ◦Mk2

∑3
k=1 L1k ◦Mk3∑3

k=1 L2k ◦Mk1

∑3
k=1 L2k ◦Mk2

∑3
k=1 L2k ◦Mk3∑3

k=1 L3k ◦Mk1

∑3
k=1 L3k ◦Mk2

∑3
k=1 L3k ◦Mk3


×
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Problem. 2. Suppose that V = W1⊕W2⊕W3 and the Wi’s are non-trivial
subspaces of V. Suppose that for each i, j ∈ {1, 2, 3},

Lij : Wj
linear−→ Wi.

1. Verify for formulaL11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

x1

x2

x3


z

=

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

x1

x2

x3


z

,

where we have used as few brackets as possible without losing clarity.

2. Argue that every T : V
linear−→ V can be expressed as

L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

,

with Lij : Wj
linear−→ Wi, in exactly one way.

3. If the function M11 M12 M13

M21 M22 M23

M31 M32 M33


⊕

: V −→ V

is defined similarly, find (with proof) the corresponding black-matrix form
of the functions

2

L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

+ 3

M11 M12 M13

M21 M22 M23

M31 M32 M33


⊕

and L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

◦

M11 M12 M13

M21 M22 M23

M31 M32 M33


⊕

.

4. Suppose that E1 + E2 + E3 = IV is a resolution of the identity, where
Im(Ei) = Wi. If

L =

L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

,

express (with proof, of course) Lij in terms of L, Ek’s and Wk’s.

5. Continuing with the set-up of part 4, find Mij : Wj
linear−→ Wi such that

E1 =

M11 M12 M13

M21 M22 M23

M31 M32 M33


⊕

.

Then do the same for E2 and E3.
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Solution. 2.

1. By definition,L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

x1

x2

x3


z

=

z ◦
L11 L12 L13

L21 L22 L23

L31 L32 L33


×

◦z−1

x1

x2

x3


z

=

z ◦
L11 L12 L13

L21 L22 L23

L31 L32 L33


×

◦z−1 ◦z

x1

x2

x3


= z ◦

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

x1

x2

x3


= z

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

x1

x2

x3


=

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

x1

x2

x3


z

.

2. (a) Existence: Let the linear functions Ei := Πi ◦z−1 : V
linear−→ Wi and

Ki := z ◦ γi : Wi
linear−→ V be given, where the Πi’s and γi’s are

defined the same way as in Problem 1.

Consider the block matrix L⊕L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

.

Let the linear function T : V
linear−→ V be given. Let each Lij :

Wj
linear−→ Wi be defined as:

Lij = Ei ◦ T ◦ Kj
∣∣∣∣
Wj

.

By definition,

Lij = Ei ◦ T ◦ Kj
∣∣∣∣
Wj

= Πi ◦z−1 ◦ T ◦z ◦ γj
∣∣∣∣
Wj

.
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Applying L⊕ to
(
w1 0V 0V

)>
z
∈ V, we get

L

w1

0V

0V


z

=


Π1 ◦z−1 ◦ T ◦z ◦ γ1

∣∣∣∣
W1

(w1)

Π2 ◦z−1 ◦ T ◦z ◦ γ1

∣∣∣∣
W1

(w1)

Π3 ◦z−1 ◦ T ◦z ◦ γ1

∣∣∣∣
W1

(w1)


z

=

Π1 ◦z−1 ◦ T ◦z
(
w1 0V 0V

)>
Π2 ◦z−1 ◦ T ◦z

(
w1 0V 0V

)>
Π3 ◦z−1 ◦ T ◦z

(
w1 0V 0V

)>

z

=

Π1 ◦z−1 ◦ T (w1)

Π2 ◦z−1 ◦ T (w1)

Π3 ◦z−1 ◦ T (w1)


z

= z

Π1 ◦z−1 ◦ T (w1)

Π2 ◦z−1 ◦ T (w1)

Π3 ◦z−1 ◦ T (w1)


= z ◦z−1 ◦ T (w1), by Part 2(a) of Problem 1

= T (w1)

By the definition of z, we can write this as

L(w1 + 0V + 0V) = L(w1) = T (w1).

In general, the equality above also holds if we start with any v =
w1 +w2 +w3 ∈ V with wi ∈Wi for i = {1, 2, 3}, because as we have
shown in Part 2(a) of Problem 1, v can be written as

v =

w1

0V

0V


z

+

0V

w2

0V


z

+

0V

0V

w3


z

,

and the linearity of L and T ensures L(v) = T (v). Hence, T can
expressed as the matrix L whose elements are defined as

Lij = Ei ◦ T ◦ Kj
∣∣∣∣
Wj

.

(b) Uniqueness: Once again, we observe that all of the steps in the “Ex-
istence” part are reversible. We can consider applying T to v, ex-
pressed in Part 3(a), and by reversing the steps in Part (a) show
that the 3 × 3 block-matrix of T must consist elements defined by

Ei ◦ T ◦ Kj
∣∣∣∣
Wj

= L⊕ij for i, j ∈ {1, 2, 3}.

From parts (a) and (b), the linear function T can be expressed as the
matrix L⊕ defined in the problem statement in exactly one way.
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3. (a) Let L⊕ = [L⊕ij ] denote the matrix L⊕ : W1 ⊕W2 ⊕W3
linear−→

W1 ⊕W2 ⊕W3. LetM⊕ = [M⊕ij
] be defined similarly forM. By

part 1, we can re-express the matrix

[(2L⊕ + 3M⊕)ij ] = 2

L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

+ 3

M11 M12 M13

M21 M22 M23

M31 M32 M33


⊕

as

2 z ◦

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

◦z−1 + 3 z ◦

M11 M12 M13

M21 M22 M23

M31 M32 M33


×

◦z−1

= z ◦ 2

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

◦z−1 + z ◦ 3

M11 M12 M13

M21 M22 M23

M31 M32 M33


×

◦z−1

= z ◦

2

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

◦z−1 + 3

M11 M12 M13

M21 M22 M23

M31 M32 M33


×

◦z−1


= z ◦

2

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

+ 3

M11 M12 M13

M21 M22 M23

M31 M32 M33


×

 ◦z−1

= z ◦
(

2[L×ij ] + 3[M×ij ]
)
◦z−1,

where the notation [Aij ] denotes the block-matrix of elements Aij
where A is a linear function, and the last relation:

[(2L× + 3M×)ij ] = 2[L×ij ] + 3[M×ij ].

follows from Problem 1. Then, we have

[(2L⊕ + 3M⊕)ij ] = z ◦
(

2[L×ij ] + 3[M×ij ]
)
◦z−1

= z ◦ [2L×ij ] ◦z
−1 +z ◦ [3M×ij ] ◦z

−1

= 2[L⊕ij ] + 3[M⊕ij ].

So, in the block-matrix form:

2

L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

+ 3

M11 M12 M13

M21 M22 M23

M31 M32 M33


⊕

=

2L11 + 3M11 2L12 + 3M12 2L13 + 3M13

2L21 + 3M21 2L22 + 3M22 2L23 + 3M23

2L31 + 3M31 2L32 + 3M32 2L33 + 3M33


⊕

.



19.3. PROBLEM SET 3 131

(b) Let L⊕ and M⊕ denote the same matrices in part (a), and let L⊕
represent the linear function T ,M⊕ represent the linear function N .
Let the matrix [(L⊕ ◦M⊕)ij ] express the composition T ◦N . Its the
elements [L⊕ ◦M⊕] can be constructed as

(L⊕ ◦M⊕)ij = Ei ◦ (L⊕ ◦M⊕) ◦ Kj
∣∣∣∣
Wj

= Ei ◦ (T ◦ N ) ◦ Kj
∣∣∣∣
Wj

, (†)

as we have done in Part 1. Consider the expression
∑3
k=1 L⊕ik

◦
M⊕kj

. By part 1, we have

L⊕ik
= Ei ◦ T ◦ Kk

∣∣∣∣
Wk

and M⊕kj
= Ek ◦ N ◦ Kj

∣∣∣∣
Wj

.

This gives

3∑
k=1

L⊕ik
◦M⊕kj

=

3∑
k=1

Ei ◦ T ◦

(
Kk
∣∣∣∣
Wk

◦ Ek

)
◦ N ◦ Kj

∣∣∣∣
Wj

= Ei ◦ T ◦

(
3∑
k=1

Kk
∣∣∣∣
Wk

◦ Ek

)
◦ N ◦ Kj

∣∣∣∣
Wj

By definition, we have

Kk
∣∣∣∣
Wk

= z ◦ γk
∣∣∣∣
Wk

and Ek = Πk ◦z−1,

which imply

3∑
k=1

Kk
∣∣∣∣
Wk

◦ Ek =

3∑
k=1

z ◦ γk
∣∣∣∣
Wk

◦Πk ◦z−1

= z ◦

(
3∑
k=1

γk

∣∣∣∣
Wk

◦Πk

)
z−1

= z ◦z−1, by Part 3(b) of Problem 1

= Identity.

It follows that,

3∑
k=1

L⊕ik
◦M⊕kj

= Ei ◦ T ◦ N ◦ Kj
∣∣∣∣
Wj

= (L⊕ ◦M⊕)ij , by (†).

Therefore, the matrix elements of [L⊕ ◦M⊕] are given by

(L⊕ ◦M⊕)ij =

3∑
k=1

L⊕ik
◦M⊕kj

Since the full block-matrix expression for [L⊕ ◦M⊕] is very similar
to what we have found with L× ◦M×, we will not produce it here.
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4. Let E1 + E2 + E3 = IV be a resolution of identity, with Im(Ei) = Wi, be

given. Furthermore, let the linear map L : V
linear−→ V be given where

L =

L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

.

Claim:

Lij = Ei ◦ L
∣∣∣∣
Wj

: Wj
linear−→ Wi

Consider applying L to
(
w1 0V 0V

)>
z
∈ V, we have

L

w1

0V

0V


z

=

L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

w1

0V

0V


z

=

L11(w1)
L21(w1)
L31(w1)


z

.

To extract an element Li1, we can apply Ei to this result:

Ei ◦ L

w1

0V

0V


z

= Ei

L11(w1)
L21(w1)
L31(w1)


z

= Li1(w1).

This shows that by considering the restricted map L
∣∣∣∣
W1

, we are able to

obtain the Li1 element of L by composing the idempotent Ei with L
∣∣∣∣
W1

.

So in general, if we consider the restricted map L
∣∣∣∣
Wj

, the same procedure

will give us the element Lij . Hence, we have verified the claim that

Lij = Ei ◦ L
∣∣∣∣
Wj

.
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5. Let

E1 =

M11 M12 M13

M21 M22 M23

M31 M32 M33


⊕

.

be given, where Im(Ei) = Wi and E1 + E2 + E3 = IV is a resolution of
identity. Continuing with the set-up of part 4, we have

Mij = Ei ◦ E1
∣∣∣∣
Wj

.

Since E1 +E2 +E3 = IV is a resolution of identity, and Im(Ei) = Wi where
W1 ⊕W2 ⊕W3 = V, ker(E1) = W2 ⊕W3. This implies the restricted

map E1
∣∣∣∣
Wj

gives 0V for j 6= 1 and acts as an identity on Wj if j = 1.

Therefore, for j 6= 1, Mij is a zero function.

If j = 1, then

Mij = Ei ◦ E1
∣∣∣∣
W1

= Ei
∣∣∣∣
W1

,

since E1 acts as identity on W1. The same argument for the restricted

map Ei
∣∣∣∣
W1

shows that Mij is the zero function if i 6= 1 and the identity

on W1 if i = 1. Therefore,

For E1 : Mij =

{
IdW1

, i, j = 1

O, i or j 6= 1

The exact same procedure can be used to find the elements Mij of E2 and
E3, simply replacing all 1’s with 2’s and 3’s. So,

For E2 : Mij =

{
IdW2

, i, j = 2

O, i or j 6= 3

For E3 : Mij =

{
IdW3

, i, j = 3

O, i or j 6= 3



134 CHAPTER 19. PROBLEMS AND SOLUTIONS

Problem. 3.

1. Using the set-up of Definition 0.7, verify the identity

[T (X )]Ω = [T ]Ω←Γ[X ]Γ.

2. Use part 1 to prove that

[T ]Ω←Γ =
[
[T (v1)]Ω [T (v2)]Ω . . . [T (vn)]Ω

]
.

3. If U is a finite-dimensional vector space with a coordinate system ∆, and

S : Z
linear−→ U, argue that

[S ◦ T ]∆←Γ = [S]∆←Ω[T ]Ω←Γ.

4. Verify that in the case T is invertible (in which case m = n), so is [T ]Ω←Γ,
and [

T −1
]
Γ←Ω

= [T ]−1
Ω←Γ.

Solution. 3.

1. By the set-up in Definition 0.3, we have [T ]Ω←Γ = [ ]Ω ◦ T ◦ AΓ, and
[X ]Γ = [ ]Γ(X ). Hence,

[T ]Ω←Γ[X ]Γ = [ ]Ω ◦ T ◦ AΓ ◦ [X ]Γ

= [ ]Ω ◦ T ◦ AΓ ◦ [ ]Γ(X )

= [ ]Ω ◦ T ◦ (AΓ ◦ [ ]Γ) (X )

= [ ]Ω ◦ T (X )

= [ ]Ω (T (X ))

= [T (X )]Ω.

2. Claim:

[T ]Ω←Γ =
[
[T (v1)]Ω [T (v2)]Ω . . . [T (vn)]Ω

]
.

Let X be vi ∈ {v1, v2, . . . , vn} a coordinate system of Γ. Then we can
create a bijective atrix

AΓ =
[
v1 v2 . . . vn

]
whose inverse is [ ]Γ. To find the columns of the matrix [T ]Ω←Γ, we want
to apply [T ]Ω←Γ to the standard basis vectors. To generate these standard
basis vectors, we simply coordinatize X :

[X ]Γ = [vi]Γ = [ ]Γ(vi) = A−1
Γ (vi) =

[
v1 v2 . . . vn

]−1
(vi) = ~ei ∈ Cn.
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Thus, the ith column of [T ]Ω←Γ is given by

[T ]Ω←Γ(~ei) = [T ]Ω←Γ[vi]Γ = [T (vi)]Γ, by Part 1.

This verifies the claim.

3. Let the finite-dimensional vector space U with coordinate system ∆ be

given. Let S : Z
linear−→ U be given. Claim:

[S ◦ T ]∆←Γ = [S]∆←Ω[T ]Ω←Γ.

Let ∆ = (w1, w2, . . . , wl) be a coordinate system for U. We also define
the bijective atrix

A∆ :=
[
w1 w2 . . . wl

]
: Cl → U.

Since A∆ s invertible, we can write [ ]∆ for A−1
∆ .

By the set-up in definition 0.7, we have the following

[T ]Ω←Γ = [ ]Ω ◦ T ◦ AΓ

[S]∆←Ω = [ ]∆ ◦ S ◦ AΩ.

It follows that

[S]∆←Ω[T ]Ω←Γ = [ ]∆ ◦ S ◦ AΩ ◦ [ ]Ω ◦ T ◦ AΓ

= [ ]∆ ◦ S ◦ (AΩ ◦ [ ]Ω) ◦ T ◦ AΓ

= [ ]∆ ◦ S ◦ T ◦ AΓ

= [ ]∆ ◦ (S ◦ T ) ◦ AΓ

= [S ◦ T ]∆←Γ,

where we have used the fact that AΩ[ ]Ω = AΩA
−1
Ω is the identity func-

tion. This completes the argument.

4. (a) To show: [T ]Ω←Γ is invertible when T is invertible.

The matrix [T ]Ω←Γ can be expressed as

[T ]Ω←Γ = [ ]Ω ◦ T ◦ AΓ.

Since T , [ ]Ω, and AΓ are invertible, the above composition is also
invertible, i.e., [T ]Ω←Γ is invertible.
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(b) Let T be invertible (in which case m = n). Claim:[
T −1

]
Γ←Ω

= [T ]−1
Ω←Γ.

Since T , AΩ, AΓ are all invertible, their inverses are defined. By
the set-up in definition 0.7, the matrix [T ]Ω←Γ can be written as the

composition [ ]Ω ◦ T ◦AΓ for the linear function T : V
linear−→ Z. Since

T −1 : Z
linear−→ V is defined, we can express its matrix [T −1]Γ←Ω as

[T −1]Γ←Ω = [ ]Γ ◦ T −1 ◦ AΩ. (†)

Consider the inverse of the matrix [T ]Ω←Γ:

[T ]−1
Ω←Γ = ([ ]Ω ◦ T ◦ AΓ)

−1

= A−1
Γ ◦ ([ ]Γ ◦ T )

−1

= A−1
Γ ◦ T

−1 ◦ [ ]−1
Ω

= [ ]Γ ◦ T −1 ◦ AΩ. (††)

From (†) and (††), we have

[T −1]Γ←Ω = [T ]−1
Ω←Γ

as claimed.
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Problem. 4. Let us write Γ0 for the standard coordinate system (1, x, x2, x3)
of the vector space P3 of all polynomials of degree at most 3.

1. Use Mathematica and the fact that
[ ]

Γ0
is an isomorphism (and iso-

morphisms map bases to bases) to verify that

∆ := (1 + x+ x2 + x3, 1 + 2x+ 4x2 + 8x3,

1 + 3x+ 9x2 + 27x3, 1 + 4x+ 16x2 + 64x3)

and

Ω := (x+ x2, x− 6x3, 1 + 4x2, 1 + 8x3)

are also coordinate systems of P3.

2. Verify that general identity

[T ]∆←Ω =
[
IP3

]
∆←Γ0

[T ]Γ0←Γ0

[
IP3

]
Γ0←Ω

=
([
IP3

]
Γ0←∆

)−1

[T ]Γ0←Γ0

[
IP3

]
Γ0←Ω

,

for T : P3
linear−→ P3.

3. Consider T : P3 → P3 defined by

T (p(x)) := xp′(2x) + p(x).

Prove that T is a linear function and use part 2 to find [T ]∆←Ω.

Solution. 4.

1. (a) Let

∆ := (1 + x+ x2 + x3, 1 + 2x+ 4x2 + 8x3,

1 + 3x+ 9x2 + 27x3, 1 + 4x+ 16x2 + 64x3)

be given. To show that ∆ is a coordinate system of V, it suffices to
show there exists an isomorphism [II]Γ0←∆ : C4

∆0
→ C4

Γ0
.

We can construct [II]Γ0←∆ column-by-column by letting [ ]Γ0 act
on the elements of ∆, by Part 2 of Problem 3:

[II]Γ0←∆ =


[(1 + x+ x2 + x3)]Γ0

[(1 + 2x+ 4x2 + 8x3)]Γ0

[(1 + 3x+ 9x2 + 27x3)]Γ0

[(1 + 4x+ 16x2 + 64x3)]Γ0


>

=


1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64

 .
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To show [II]Γ0←∆ is an isomorphism, it suffices to check if its deter-
minant is nonzero, which can be done in Mathematica:

det ([II]Γ0←∆) = 12 6= 0.

Therefore, ∆ is a coordinate system of P3.

Mathematica code:

In[4]:= Det[{{1, 1, 1, 1}, {1, 2, 3, 4}, {1, 4, 9, 16},
{1, 8, 27, 64}}]

Out [4]= 12

(b) For Ω := (x+ x2, x− 6x3, 1 + 4x2, 1 + 8x3), we repeat the procedure
laid out above to determine whether Ω is a coordinate system for P3.

[II]Γ0←Ω =


[(x+ x2)]Γ0

[(x− 6x3)]Γ0

[(1 + 4x2)]Γ0

[(1 + 8x3)]Γ0


>

=


0 0 1 1
1 1 0 0
1 0 4 0
0 −6 0 8

 .

We can calculate the determinant of [II]Γ0←Ω in Mathematica:

det ([II]Γ0←Ω) = −32 6= 0.

Therefore, Ω is a coordinate system of P3.

Mathematica code:

In[6]:= Det[{{0, 0, 1, 1}, {1, 1, 0, 0},
{1, 0, 4, 0}, {0, -6, 0, 8}}]

Out [6]= -32

2. Let T : P3
linear−→ P3 be given.

(a) First identity:[
IP3

]
∆←Γ0

[T ]Γ0←Γ0

[
IP3

]
Γ0←Ω

= ([ ]∆ ◦ IP3
◦ AΓ0

) ◦ ([ ]Γ0
◦ T ◦ AΓ0

) ◦ ([ ]Γ0
◦ IP3

◦ AΩ)

= [ ]∆ ◦ IP3
◦ T ◦ IP3

◦ AΩ

= [ ]∆ ◦ T ◦ AΩ

= [T ]∆←Ω.

(b) The second identity follows from the fact that

([IP3
]Γ0←∆)

−1
= ([ ]Γ0

◦ IP3
◦ A∆)

−1

= [ ]∆ ◦ I−1
P3
◦ AΓ0

= [ ]∆ ◦ IP3 ◦ AΓ0 .
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So we have

[T ]∆←Ω =
[
IP3

]
∆←Γ0

[T ]Γ0←Γ0

[
IP3

]
Γ0←Ω

= ([ ]∆ ◦ IP3 ◦ AΓ0) ◦ [T ]Γ0←Γ0

[
IP3

]
Γ0←Ω

= ([IP3
]Γ0←∆)

−1
[T ]Γ0←Γ0

[
IP3

]
Γ0←Ω

3. Let T : P3 → P3 be given. T is defined as

T (p(x)) := xp′(2x) + p(x).

(a) Claim: T is a linear function.
T is a linear function if it satisfies the linearity conditions. Consider
p(x), q(x) ∈ P3. Then we have

T (p(x) + q(x)) = x(p(2x) + q(2x))′ + (p(x) + q(x))

= xp′(2x) + xq′(2x) + p(x) + q(x)

= (xp′(2x) + p(x)) + (xq′(2x) + q(x))

= T (p(x)) + T (q(x)). (†)

Consider c ∈ C and p(x) ∈ P3,

T (cp(x)) = x(cp(2x))′ + cp(x)

= cxp′(2x) + cp(x)

= c(xp′(2x) + p(x))

= cT (p(x)). (††)

From (†) and (†), T is a linear function.

(b) Find [T ]∆←Ω.

By part 2 of Problem 3

[T ]∆←Ω =
([
IP3

]
Γ0←∆

)−1

[T ]Γ0←Γ0

[
IP3

]
Γ0←Ω

.

In part 1, we have found the isomorphisms:

([
IP3

]
Γ0←∆

)−1

=


1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64


−1

=


4 −13/3 3/2 −1/6
−6 19/2 −4 1/2
4 −7 7/2 −1/2
−1 11/6 −1 1/6


[
IP3

]
Γ0←Ω

=


0 0 1 1
1 1 0 0
1 0 4 0
0 −6 0 8

 .
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To find [T ]∆←Ω we only need to find [T ]Γ0←Γ0 . To do this, we use
part 2 of Problem 3, which says,

[T ]Γ0←Γ0 =
[
[T (1)]Γ0

[T (x)]Γ0
[T (x2)]Γ0

[T (x3)]Γ0

]
,

where

T (1) = x
d

dx
2 + 1 = 1

T (x) = x
d

dx
(2x) + x = 3x

T (x2) = x
d

dx
(2x)2 + x2 = 9x2

T (x3) = x
d

dx
(2x)3 + x3 = 25x3.

Therefore,

[T ]Γ0←Γ0 =
[
[T (1)]Γ0

[T (x)]Γ0
[T (x2)]Γ0

[T (x3)]Γ0

]
=


1 0 0 0
0 3 0 0
0 0 9 0
0 0 0 25

 .

Finally, we can compute [T ]∆←Ω:

[T ]∆←Ω =


4 −13/3 3/2 −1/6
−6 19/2 −4 1/2
4 −7 7/2 −1/2
−1 11/6 −1 1/6




1 0 0 0
0 3 0 0
0 0 9 0
0 0 0 25




0 0 1 1
1 1 0 0
1 0 4 0
0 −6 0 8



=


1/2 12 58 −88/3
−15/2 −93/2 −150 94

21/ 54 130 −96
−7/2 −39/2 −37 97/3

 .

Mathematica code:

A =
Inverse [{{1, 1, 1, 1}, {1, 2, 3, 4}, {1, 4, 9, 16}, {1, 8, 27, 64}}]

{{4, -(13/3), 3/2, -(1/6)}, {-6, 19/2, -4, 1/2}, {4, -7, 7/
2, -(1/2)}, {-1, 11/6, -1, 1/6}}

B = {{1, 0, 0, 0}, {0, 3, 0, 0}, {0, 0, 9, 0}, {0, 0, 0, 25}}

CC = {{0, 0, 1, 1}, {1, 1, 0, 0}, {1, 0, 4, 0}, {0, -6, 0, 8}}

In[7]:= A.B.CC

Out [7]= {{1/2, 12, 58, -(88/3)} , {-(15/2), -(93/2), -150, 94},
{21/2, 54, 130, -96}, {-(7/2), -(39/2), -37, 97/3}}
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Problem. 5. Suppose that V = W1⊕W2⊕W3 and Γi is a coordinate system
of Wi. Suppose that for each i, j ∈ {1, 2, 3},

Lij : Wj
linear−→ Wi.

Let

L :=

L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

.

Let ∆ be the concatenation Γ1||Γ2||Γ3 of the coordinate systems Γi. As we
know, ∆ is a coordinate system of V.

Prove that [L]∆←∆ equals the partitioned matrix[L11]Γ1←Γ1
[L12]Γ1←Γ2

[L13]Γ1←Γ3

[L21]Γ2←Γ1
[L22]Γ2←Γ2

[L23]Γ2←Γ3

[L31]Γ3←Γ1
[L32]Γ3←Γ2

[L33]Γ3←Γ3

 .
Solution. 5. Consider a 3 × 3 block-matrix, which consists of just the lin-

ear function Lij : Wj
linear−→ Wi at the ith row and jth column and the zero

function everywhere else. Let [Lij ]⊕ : V
linear−→ V denote this matrix. By this

construction, we have

L =

3∑
i=1

3∑
j=1

[Lij ]⊕ =

L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

.

It follows that the matrix [L]∆←∆ of L can be written as[
L
]
∆←∆

=
[∑3

i=1

∑3
j=1[Lij ]⊕

]
∆←∆

=

3∑
i=1

3∑
j=1

[
[Lij ]⊕

]
∆←∆

Consider the coordinate system Γk where k ∈ {1, 2, 3}. Let Γk be formed
by a (finite) collection of basis elements, called glk’s. Consider the mapping
[Lij ]⊕(glk)⊕ and the matrix

[
[Lij ]⊕

]
∆←∆

.

We observe that [Lij ]⊕(glk)⊕ is 0V if k 6= j and z ([Lij ]⊕(glj) + 0V + 0V) if
j = k, where z is defined in Definition 0.4. What this says is that [Lij ]⊕(glk)⊕
gives a column vector with Lij(glj) on the ith row and 0V everywhere else.
This means that if we consider the coordinatization

[
[Lij ]⊕(glj)⊕

]
∆

, where
∆ = Γ1||Γ2||Γ3, we will end up with a column vector with the zero function
everywhere except

[
[Lij ]⊕(glj)

]
Γi

on the ith row. (†)
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Now, we can construct
[
[Lij ]⊕

]
∆←∆

column-by-column as

[
[Lij ]⊕

]
∆←∆

=

[[Lij ]⊕(g11)⊕
]
∆

. . .[
[Lij ]⊕(ga1)⊕

]
∆

> [[Lij ]⊕(g12)⊕
]
∆

. . .[
[Lij ]⊕(gb2)⊕

]
∆

> [[Lij ]⊕(g13)⊕
]
∆

. . .[
[Lij ]⊕(gc3)⊕

]
∆

>


where a, b, c are the number of elements in Γ1, Γ2, Γ3, respectively. From (†),
we know that two of three matrix-blocks in the expression above will be the
zero-block because j has a fixed value of either 1,2, or 3. Consider the only
non-zero block (located at the jth column)[[Lij ]⊕(g1j)⊕

]
∆

. . .[
[Lij ]⊕(gaj)⊕

]
∆

> =
[[

[Lij ]⊕(g1j)⊕
]
∆

. . .
[
[Lij ]⊕(gaj)⊕

]
∆

]
. (††)

Recalling that
[
[Lij ]⊕(glj)⊕

]
∆

is a column vector with Lij(glj) on the ith row
and 0V everywhere else, it follows that we can represent this matrix block as
one with two rows of zeros and an ith row of[

Lij(g1j) Lij(g1j) . . . Lij(gaj)
]
,

which precisely expresses the matrix
[
Lij
]
Γi←Γj

. Therefore, we can treat the

expression (††) as a 3-element column of the matrix
[
[Lij ]⊕

]
∆←∆

whose element

on the ith row and jth column is
[
Lij
]
Γi←Γj

, and the zero function everywhere

else. Hence,

[
L
]
∆←∆

=

3∑
i=1

3∑
j=1

[
[Lij ]⊕

]
∆←∆

=


[
L11

]
Γ1←Γ1

[
L21

]
Γ2←Γ1

[
L31

]
Γ3←Γ1[

L12

]
Γ1←Γ2

[
L22

]
Γ2←Γ2

[
L32

]
Γ3←Γ2[

L13

]
Γ1←Γ3

[
L23

]
Γ2←Γ3

[
L33

]
Γ3←Γ3

 .
This completes the argument.

An example can help justify this argument. Consider [L11]⊕,

[L11] =

L11 0 0
0 0 0
0 0 0


⊕

,

where we are using the 0’s to denote the zero functions Wi → Wj . Then
consider g11 the first vector in the coordinate system Γ1. We haveL11 0 0

0 0 0
0 0 0


⊕

g11

0V

0V


z

=

L11(g11)
0V

0V


z

.



19.3. PROBLEM SET 3 143

Now consider [[L11]⊕]∆←∆. This matrix can be constructed column-by-column
with each column being [L11(gij)]∆←∆, where j indicates from which Γj gij is
taken. We observe that if j is not 1, then L11(gij) = 0V. This means the all
columns of [[L11]⊕]∆←∆ are the zero columns unless j = 1. Consider the j = 1
columns. We know that the coordinatizationL11(g11)

0V

0V


z


∆←∆

=

[L11(g11)]Γ1

0V

0V

 ,

because the L11(g11) ∈W1. So it follows that the concatenation of the columns[L11(g11)]Γ1 . . . L11(ga1)]Γ1

O . . . O
O . . . O


in the matrix [[L11]⊕]∆←∆ is nothing but[L11]Γ1←Γ1

O
O

 .

So we have

[[L11]⊕]∆←∆ =

[L11]Γ1←Γ1
O O

O O O
O O O

 ,
where O denotes the zero function.

We can equivalently generate other examples for [Lij ]⊕, i, j ∈ {1, 2, 3}, and
in the end add up the results (with different combinations of i, j’s of course) to
get [L]∆←∆, expressed in the form given in the problem statement as desired.
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19.4 Problem set 4

Problem. 1.

Suppose that T ∈ L(V) and

Im(T ) = W + Z,

where W and Z are subspaces of V. Argue that

V = T−1[W] + T−1[Z].

Solution. removed for corrections
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Problem. 2.

1. Suppose that V1,V2,V3 are non-trivial vector spaces, and for each i, j ∈
{1, 2, 3},

Lij : Vj
linear−→ Vi.

Let L be the block-matrix function:L11 L12 L13

L21 L22 L23

L31 L32 L33


×

: V1 ×V2 ×V3
linear−→ V1 ×V2 ×V3.

Suppose that it turns out that V2 = V2.1 ×V2.2. Then L maybe consid-
ered as a linear function on

V1 ×V2.1 ×V2.2 ×V3.

What is the corresponding block-matrix form of L and how does it relate

to

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

? Justify your claims.

2. Suppose that W1⊕W2⊕W3 = V and the Wi’s are non-trivial subspaces
of V. Suppose that for each i, j ∈ {1, 2, 3}:

Lij : Wj
linear−→ Wi.

Let L be the block-matrix functionL11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

: V
linear−→ V.

Suppose it turns out that W1 = W1.1 ⊕W1.2. Then

V = W1.1 ⊕W1.2 ⊕W2 ⊕W3.

What is the block-matrix form of L with respect to this direct sum de-

composition and how does it relate to

L11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

? Justify your

claims.

Solution.
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1. Recall from the previous problem set that the elements of the block matrix
functionL11 L12 L13

L21 L22 L23

L31 L32 L33


×

: V1 ×V2 ×V3
linear−→ V1 ×V2 ×V3.

can be expressed as

Lij = Πi ◦ L ◦ γj ,

where the Πi’s and γj ’s are coordinate projections from V onto Vi and
injections from Vj into V. Let V2 = V2.1 × V2.2. We claim that the
matrix-block form of L in this case is

L11 L1|2.1 L1|2.2 L13

L2.1|1 L2.1|2.1 L2.1|2.2 L2.1|3
L2.2|1 L2.2|2.1 L2.2|2.2 L2.2|3
L31 L3|2.1 L3|2.2 L33


×

.

In particular, we claim the following relations between the matrix ele-
ments Lij in the former expression and the block-elements in the latter
expression:

L12 =
[
L1|2.1 L1|2.2

]
,L32 =

[
L3|2.1 L3|2.2

]
,

L21 =

[
L2.1|1
L2.2|1

]
,L23 =

[
L2.1|3
L2.2|3

]
,L22 =

[
L2.1|2.1 L2.1|2.2
L2.2|2.1 L2.2|2.2

]
.

We can mimic what we have done to define Lij to define these new block-
matrix elements. Let δn.m be defined as the coordinate injection from
Vn.m into V2, n,m ∈ {1, 2}. Also, define ρn.m as the coordinate pro-
jection from V onto Vn.m, n,m ∈ {1, 2}. Consider the linear function
L22 : V2 → V2, which we claim to be

L22 =

[
L2.1|2.1 L2.1|2.2
L2.2|2.1 L2.2|2.2

]
.

By exactly the same way we have defined the Lij ’s of L using the coordi-
nate projections and injections, we have

L2.1|2.1 = ρ2.1 ◦ L22 ◦ δ2.1
L2.2|2.1 = ρ2.2 ◦ L22 ◦ δ2.1
L2.1|2.2 = ρ2.1 ◦ L22 ◦ δ2.2
L2.2|2.2 = ρ2.2 ◦ L22 ◦ δ2.2
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In terms of the linear function L,

L2.1|2.1 = ρ2.1 ◦Π2 ◦ L ◦ γ2 ◦ δ2.1
L2.2|2.1 = ρ2.2 ◦Π2 ◦ L ◦ γ2 ◦ δ2.1
L2.1|2.2 = ρ2.1 ◦Π2 ◦ L ◦ γ2 ◦ δ2.2
L2.2|2.2 = ρ2.2 ◦Π2 ◦ L ◦ γ2 ◦ δ2.2.

Next, consider Li2 = Πi ◦ L ◦ γ2. We define

Li|2.1 = Πi ◦ L ◦ γ2 ◦ δ2.1
Li|2.2 = Πi ◦ L ◦ γ2 ◦ δ2.2,

for i ∈ {1, 3}. Finally, consider L2j = Π2 ◦ L ◦ γj . We define

L2.1|j = ρ2.1 ◦Π2 ◦ L ◦ γj
L2.2|j = ρ2.2 ◦Π2 ◦ L ◦ γj ,

for j ∈ {1, 3}.

We can now verify that L can be represented as the 4-block-by-4-block as
above. Consider

v =


a(
b
c

)
d

 ∈ V1 ×V2 ×V3

with V2 = V2.1 ×V2.2. v can be written as

v =


a(
0
0

)
0

+


0(
b
0

)
0

+


0(
0
c

)
0

+


0(
0
0

)
d

 .

We can check that L(v) is the same as applying the 4-block-by-4-block
matrix expression to v by going through every term in the above expression

of v. For example, we can consider
(
a
(
0 0

)>
0
)>

. Then
L11 L1|2.1 L1|2.2 L13

L2.1|1 L2.1|2.1 L2.1|2.2 L2.1|3
L2.2|1 L2.2|2.1 L2.2|2.2 L2.2|3
L31 L3|2.1 L3|2.2 L33


×


a(
0
0

)
0

 =


L11(a)(
L2.1|1(a)
L2.2|1(a)

)
L31(a)

 .

We can look at(
L2.1|1(a)
L2.2|1(a)

)
=

(
ρ2.1 ◦ L ◦ γ1(a)
ρ2.2 ◦ L ◦ γ1(a)

)
=

(
ρ2.1 ◦Π2 ◦ L21(a)
ρ2.2 ◦Π2 ◦ L21(a)

)
= L21(a), by the construction of ρ2.1, ρ2.2.
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Hence
L11 L1|2.1 L1|2.2 L13

L2.1|1 L2.1|2.1 L2.1|2.2 L2.1|3
L2.2|1 L2.2|2.1 L2.2|2.2 L2.2|3
L31 L3|2.1 L3|2.2 L33


×


a(
0
0

)
0

 =


L11(a)(
L2.1|1(a)
L2.2|1(a)

)
L31(a)

 =

L11(a)
L21(a)
L31(a)

 .

We can repeat this checking process and find that the middle two “columns”
of the 4-by-4 block expression correspond to the second column of the 3-
by-3 block expression, and that the last column of the 4-by-4 expression
corresponds to the the third column of the 3-by-3 expression.

This will complete our justification.

2. From the previous problem set, we know thatL11 L12 L13

L21 L22 L23

L31 L32 L33


⊕

= z ◦

L11 L12 L13

L21 L22 L23

L31 L32 L33


×

◦z−1

where z is the isomorphism W1×W2×W3
linear−→ W1⊕W2⊕W3 defined

in the last problem set. Since W1 = W1.1⊕W1.2, we can define a similar

isomorphism ♣ : W1.1 ×W1.2
linear−→ W1.1 ⊕W1.2 where for w1.1 ∈ W1

and w1.2 ∈W1.2,

♣
(
w1.1

w1.2

)
= w1.1 + w1.2.

Also, define the linear functions σ1.m := ρ1.m ◦ ♣−1 : W1 → W1.m and
ω1.m := ♣ ◦ δ1.m : W1.m →W1, where ρ1.m and δ1.m are linear functions
defined similarly as in Part 1, m = {1, 2}.

Considering the previous part of this problem, we know that the block-
matrix expression for L× corresponding to W1 = W1.1 ×W1.2 is

L1.1|1.1 L1.1|1.2 L1.1|2 L1.1|3
L1.2|1.1 L1.2|1.2 L1.2|2 L1.2|3
L2|1.1 L2|1.2 L22 L23

L3|1.1 L3|1.2 L32 L33


×

,

where the matrix elements are defined in the same way as in Part 1. We
claim that the 4-by-4 block-matrix expression for L⊕ is

L1.1|1.1 L1.1|1.2 L1.1|2 L1.1|3
L1.2|1.1 L1.2|1.2 L1.2|2 L1.2|3
L2|1.1 L2|1.2 L22 L23

L3|1.1 L3|1.2 L32 L33


⊕

.
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Recall the linear functions Ei := Πi ◦z−1 : V → Vi and Kj := z ◦ γj :
Wj → V from the last problem set. We have also defined

Lij = Ei ◦ L⊕ ◦ Kj .

We claim that

L11 =

[
L1.1|1.1 L1.1|1.2
L1.2|1.1 L1.2|1.2

]
,L12 =

[
L1.1|2
L1.2|2

]
,L13 =

[
L1.1|3
L1.2|3

]
,

L21 =
[
L2|1.1 L2|1.2

]
,L31 =

[
L3|1.1 L3|1.2

]
.

The definitions of these matrix elements are similar to those in Part 1,
except that we have to use the isomorphism ♣ to obtain the appropriate
inputs for the Lij ’s. Consider the elements of L11. We claim that

L1.i|1.j = σ1.i ◦ E1 ◦ L⊕ ◦ K1 ◦ ω1.j .

For the elements of L21 and L31, we claim that

Li|1.j = Ei ◦ L⊕ ◦ K1 ◦ ω1.j .

For the elements of L12 and L13, we claim that

L1.i|j = σ1.i ◦ E1 ◦ L⊕ ◦ Kj .

The justification for these definitions can be reproduced from the example
in Part 1., except instead of consider a v in the Cartesian product, we now
considering a v in the direct sum:

v =

(
a

(
0
0

)
♣

0

)>
z

,

which can be expressed as(
a

(
0
0

)
♣

0

)>
z

+

(
0

(
b
0

)
♣

0

)>
z

+

(
0

(
0
c

)
♣

0

)>
z

+

(
0

(
0
0

)
♣

d

)>
z

.

Verifying the above definitions is now only a matter of evaluating L⊕
applied to each term in this expression for v and compare the result to the
4-by-4 block representation applied to the same term. This will complete
our justification.
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Problem. 3.

Suppose that relatively prime polynomials p1 and p2 have degrees 6 and 11
respectively. Consider the function:

ψ : P10 × P5 → P16

defined by

ψ

(
f
g

)
:= f · p1 − g · p2.

Verify each o the following claims.

1. ψ is a linear function.

2. ψ is injective.

3. ψ is surjective.

4. There exist polynomials q1 and q2 such that

q1 · p1 + q2 · p2 = 1,

where 1 is the constantly 1 polynomial.

Solution.

1. (a) Consider (
f
g

)
,

(
h
k

)
∈ P10 × P5.

Then

ψ

(
f
g

)
+ ψ

(
h
k

)
= (f · p1 − g · p2) + (h · p1 − k · p1)

= (f + h) · p1 − (g + k) · p2

= ψ

(
f + h
g + k

)
= ψ

((
f
g

)
+

(
h
k

))
(†)

(b) Consider c ∈ C,

ψ

(
cf
cg

)
= cf · p1 − cg · p2 = c(f · p1 − g · p2) = cψ

(
f
g

)
. (††)

From (†) and (††), ψ is a linear function.
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2. Assume (to get a contradiction) that

(
f
g

)
is a non-zero element in ker(ψ).

Then

f · p1 − g · p2 = 0.

Since p1, p2 are both non-zero (they are relatively prime), if either one of
f or g were zero, it would force the other polynomial to be zero so that

f · p1 − g · p2 = 0, contradicting the requirement that

(
f
g

)
is non-zero

element. Therefore, neither f nor g can be zero.

Since p1 and p2 are relatively prime (i.e., they have no common roots),
the roots of p2 must also be roots of f . Furthermore, the roots of p2 must
also be roots of f with equal or greater multiplicities, because otherwise
there will at least one factor (x− λk) in the factorization of p2 that has a
higher power (or multiplicity) than that in f (and not in p1), resulting in
a non-zero f · p1 − g · p2.

This implies that the degree of f has to be at least deg(p2) = 11. But
since deg(f) ≤ 10, we have a contradiction. By symmetry, we will also
have a contradiction if we repeat this argument for g and p1.

Hence, there is no such non-zero

(
f
g

)
in the kernel of ψ, i.e., ψ is injective.

3. Since both P10 × P5 and P16 are finite-dimensional vector spaces, we can
use the Rank-Nullity Theorem:

dim(ker(ψ)) + dim(Im(ψ)) = dim(P10 × P5).

From part 1., we know dim(ker(ψ)) = 0, so

dim(Im(ψ)) = dim(P10 × P5) = dim(P10) + dim(P5) = 11 + 6 = 17 = dim(P16).

Furthermore, Im(ψ) ≺ P16. Hence, Im(ψ) = P16. So, ψ is surjective.

4. Since ψ is surjective, there exist polynomials f ∈ P10 and g ∈ P5 such
that

ψ

(
f
g

)
= 1 ∈ P16 = Im(ψ),

i.e., the given f and g satisfy

f · p1 − g · p2 = 1.

Let q1 = f ∈ P10 and q2 = −g ∈ P5, then

q1 · p1 + q2 · p2 = 1.

This verifies the existence of q1 and q2.



152 CHAPTER 19. PROBLEMS AND SOLUTIONS

Problem. 4.

1. What would you do to prove the last claim of problem 2 in a general case
of non-zero relatively prime polynomials p1 and p2? You do not need to
carry out the proof, but you DO need to set it all up along the lines of
Problem 2. Make sure you cover all of the cases!

2. Prove that the following claims are equivalent.

(a) Non-zero polynomials p1 and p2 are relatively prime.

(b) There exist polynomials q1 and q2 such that

q1 · p1 + q2 · p2 = 1.

3. Argue that for any non-zero polynomials f and g there exist polynomials
q1 and q2 such that

q1 · f + q2 · g = gcd(f, g).

4. Argue that the following claims are equivalent for any non-zero polynomi-
als f , g, and h.

(a) There exist polynomials q1 and q2 such that

q1 · f + q2 · g = h.

(b) h is a polynomial multiple of gcd(f, g).

Solution.

1. (a) Case 1: Both p1 and p2 are zero-degree polynomials.

In this case, p1 and p2 are two constant, non-zero polynomials. Let
p2(z) = C ∈ C for any z ∈ C, C 6= 0. If we let q1(z) be the constant
0 and q2(z) be the constant 1/C for any z ∈ C then

q1(z)p1(z) + q2(z)p2(z) = 0 +
1

C
C = 0 + 1 = 1,

for any z ∈ C, i.e., q1 · p1 + q2 · p2 = 1. This shows there are polyno-
mials q1 and q2 such that q1 · p1 + q2 · p2 = 1 is satisfied.

(b) Case 2: Exactly one of p1 and p2 is a zero-degree polynomial.

Assume that p1 is the non-zero zero-degree polynomial of the two,
i.e., it is a non-zero constant polynomial. Let p1(z) = C ∈ C, C 6= 0,
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for any z ∈ C. If we let q1(z) be the constant 1/C and q2(z) be the
constant 0 for any z ∈ C then

q1(z)p1(z) + q2(z)p2(z) =
1

C
C + 0 = 1 + 0 = 1,

for any z ∈ C, i.e., q1 · p1 + q2 · p2 = 1. This shows there are polyno-
mials q1 and q2 such that q1 · p1 + q2 · p2 = 1 is satisfied.

(c) Case 3: Both p1 and p2 have degree greater than 0.

To show the existence of q1 and q2 such that q1 ·p1 +q2 ·p2 = 1 we can
construct a similar proof to that in Problem 3. Let the polynomials
p1 and p2 be given with degrees m,n > 0 respectively. Consider the
function:

ψ : Pn−1 × Pm−1 → Pm+n−1, (19.1)

defined by

ψ

(
f
g

)
:= f · p1 + g · p2. (19.2)

We can then show that ψ is a linear function. Next, we show that it
is injective, which implies surjectivity by the Rank-Nullity Theorem.
By the surjectivity of ψ, we know that given 1 ∈ Im(ψ), there must

exist a pair f ∈ Pn−1,−g ∈ Pm−1 such that ψ

(
f
−g

)
= 1.

From parts (a), (b), and (c), we can conclude that there exist polyno-
mials q1, q2 such that for non-zero relatively prime polynomials p1, p2,
q1 · p1 + q2 · p2 = 1.

2. • [a. =⇒ b.] This implication is true by Part 1. of this problem.

• [b. =⇒ a.] Let polynomials q1 and q2 be given such that

q1 · p1 + q2 · p2 = 1,

where p1 and p2 are also polynomials. Claim: Non-zero p1 and p2

are relatively prime.

Assume that p1 and p2 are non-zero. From TYC 2.4, we can write
p1 and p2 as

p1 = p̂1 · gcd(p1, p2)

p2 = p̂2 · gcd(p1, p2),
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where p̂1 and p̂2 are non-zero relatively prime polynomials. It follows
that

q1 · p̂1 · gcd(p1, p2) + q2 · p̂2 · gcd(p1, p2) = 1,

i.e.,

(q1 · p̂1 + q2 · p̂2) · gcd(p1, p2) = 1,

which implies

deg(q1 · p̂1 + q2 · p̂2) = deg(gcd(p1, p2)) = 0.

Therefore, gcd(p1, p2) has to be a constant polynomial. Moreover,
since gcd(p1, p2) is monic by definition, it has to be the constantly 1
polynomial. Hence, p1 and p2 are relatively prime by definition.

3. Let non-zero polynomials f, g be given. Then we have

f = f̂ · gcd(f, g)

g = ĝ · gcd(f, g),

where f̂ , ĝ are relatively prime. It follows that

q1 · f + q2 · g = q1 · f̂ · gcd(f, g) + q2 · ĝ · gcd(f, g)

= (q1 · f̂ + q2 · ĝ) · gcd(f, g).

From Part 2., we know that for relatively prime polynomials f̂ and ĝ,
there exist polynomials q1, q2 such that

q1 · f̂ + q2 · ĝ = 1.

This means such q1 and q2 will give

(q1 · f̂ + q2 · ĝ) · gcd(f, g) = 1 · gcd(f, g) = gcd(f, g).

This completes the argument.

4. • [a. =⇒ b.] Let non-zero polynomials f, g, h be given such that

q1 · f + q2 · g = h,

for some polynomials q1, q2. From Part 3., we know that

h = q1 · f + q2 · g = q1 · f̂ · gcd(f, g) + q2 · ĝ · gcd(f, g)

= (q1 · f̂ + q2 · ĝ) · gcd(f, g),

for relatively prime f̂ and ĝ. This implies h is a polynomial multiple
of gcd(p1, p2).
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• [b. =⇒ a.] Let h be written as k · gcd(f, g) where k is some polyno-
mial. From Part 3., there exist polynomials s1, s2 such that

s1 · f + s2 · g = gcd(f, g).

Multiplying both sides by the polynomial k, we have

k · s1 · f + k · s2 · g = k · gcd(f, g) = h.

Hence, there exist polynomials q1 and q2 such that

q1 · f + q2 · g = h,

namely,

q1 = k · s1

q2 = k · s2.
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Problem. 5.

Suppose that W is a non-{0} ideal in P. Then W contains some monic
polynomials (why?) and among these there must be some of the smallest degree,
say n0. Let p0 be one such. (It is entirely possible that p0 = 1.)

1. Suppose that p is a non-zero polynomial in W, and using the Division
Algorithm for Polynomials (see Axler p.121) we write

p = q · p0 + r,

where q, r ∈ P and deg(r) < deg(p0). Argue that r ∈W.

2. Use the result of part 1 to argue that every polynomial p in W is a
polynomial multiple of p0.

3. Argue that p0 is the only monic polynomial of the smallest degree n0 in
W, and that

W =
{
q · p0

∣∣q ∈ P
}
.

This polynomial p0 is said to be the generator of the ideal W.

Solution.

1. Let p ∈ W a non-zero polynomial be given. Let p0 ∈ W be the monic
polynomial with the smallest degree. W is an ideal in P, so for q ∈ P,
q · p0 ∈W. W is also subspace, so

r = p− q · p0 ∈W.

2. Let the above q, p0, p, r be given again. We know that

p = q · p0 + r,

where deg(r) < deg(p0). Since deg(p0) minimal and p is non-zero, r has
to be the constantly zero polynomial. Therefore,

p = q · p0 ∈W,

i.e., every p ∈W is a polynomial multiple of p0.

3. Let some p′0 be a monic polynomial of the smallest degree n0 in W be
given. Since p′0 ∈ W, p′0 is a polynomial multiple of p0, by the previous
part. Let us write p′0 = q·p0 for some p ∈ P. Since deg(p′0) = deg(p0) = n0,
deg(q) = 1, i.e., p is a constant polynomial. Furthermore, since both p0

and p′0 are monic, q has to be 1. Hence, p′0 = p0, i.e., p0 is unique.

It follows from the previous part that W is a collection of elements that
are polynomial multiples of a unique monic polynomial of the smallest
degree, called p0, i.e.,

W = {q · p0

∣∣p ∈ P}.
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19.5 Problem set 5

Problem. 1. Suppose that F is a commutative collection of linear operators
on a (not necessarily finite-dimensional) vector space V. Suppose that λ is an
eigenvalue for some A ∈ F, and let EA(λ) be the corresponding eigenspace of
A. Argue that this EA(λ) is an invariant subspace for every operator in F.

Solution. 1.

Since EA(λ) is subspace, it suffices to show that B[EA(λ)] ⊂ EA(λ).

Consider v ∈ EA(λ), then Av = λv. Also, consider B ∈ F. Since A,B ∈ F,
AB = BA, so

ABv = BAv = B(λv) = λBv.

Therefore, Bv is a λ-eigenvector of A, i.e., B(v) ∈ EA(λ) for any v ∈ EA(λ). So,
B[EA(λ)] ⊆ EA(λ). Hence EA(λ) is an invariant subspace for any B ∈ F.
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Problem. 2. Let us use the same set-up as in Problem 1, and let W be a
subspace of V such that

V = EA(λ)⊕W.

Argue that with respect to this decomposition, operators in F have block matrix
representation of the form [

L M
O K

]
,

where the L’s form a commutative family in L(EA(λ),EA(λ)), and the K’s form
a commutative family in L(W,W).

Solution. 2.

Let B1,B2 ∈ F be given. With respect to the decomposition V = EA(λ)⊕W,
where EA(λ) ∈ Lat(B1) and EA(λ) ∈ Lat(B2), the block matrix representations
of B1,B2 have the form[

L1 M1

O1 K1

]
and

[
L2 M2

O2 K2

]
,

respectively, where

Lj : EA(λ)
linear−→ EA(λ)

Kj : W
linear−→ W.

Since B1,B2 ∈ F, they commute, i.e.,[
L1 M1

O1 K1

] [
L2 M2

O2 K2

]
=

[
L1L2 �
O K1K2

]
=

[
L2L1 4
O K2K1

]
=

[
L2 M2

O2 K2

] [
L1 M1

O1 K1

]
.

Therefore, it is necessary that L1,L2 commute and K1,K2 commute. Since
this holds for any choice of B1,B2 ∈ F, the L’s form a commutative family in
L (EA(λ),EA(λ)), and the K’s form a commutative family in L (W,W).
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Problem. 3. Commuting collections of complex matrices are simulta-
neously 4-able
Argue that every commutative family of operators on a finite-dimensional vector
space over the complex numbers is simultaneously upper-triangularizable, and
simultaneously lower-triangularizable.

Solution. 3. Let F, a commuting collection of complex matrices on Cn, be
given. We notice that if n = 1 then any complex matrix in M1×1 is auto-
matically triangular, so any such F on C is triangularizable. In order for the
statement above to fail, n ≥ 2. Let us consider n0 ≥ 2 the smallest integer for
which this statement fails.

Suppose that λ is an eigenvalue for some matrix A ∈ F, and let EA(λ) be the
corresponding eigenspace ofA. By Problem 2, with respect to the decomposition
V = EA(λ)⊕W where W ≺ V, any B ∈ F has a block-matrix representation
of the form

[B] =

[
L M
O K

]
,

where the L’s form a commutative family in L(EA(λ),EA(λ)) and the K’s
form a commutative family in L(W,W). Since the L’s and K’s are matri-
ces on Ca,Cb respectively where a, b < n0, the statement above implies that
both L(EA(λ),EA(λ)) and L(W,W) are simultaneously upper triangularizable.
This means there exist a basis Γ1 for EA(λ) with respect to which [L]Γ1←Γ1

of
L ∈ L(EA(λ),EA(λ)) is upper triangular, and a basis Γ2 for W with respect to
which [K]Γ2←Γ2

of K ∈ L(W,W) is upper triangular.

Since V = EA(λ) ⊕W, the concatenation Γ = Γ1||Γ2 is a basis for V
with respect to which both [L]Γ1←Γ1

and [K]Γ2←Γ2
are upper-triangular for any

L ∈ L(EA(λ),EA(λ)),K ∈ L(W,W). It follows that with respect to this basis,
any (block) matrix [B]Γ←Γ is upper triangular, and thus any B ∈ F is similar
to an upper triangular matrix, i.e., upper triangularizable. Hence, F on Cn0 is
simultaneously upper triangularizable.

However, this contradicts the assumption that the statement fails at Cn0 . By
contraposition, every commutative family of operators on a finite-dimensional
vector space over the complex numbers must be simultaneously upper-triangularizable.

To show that the “lower triangularizable” case also holds, we reproduce a
similar argument as above, starting with writing [B] with respect to the decom-
position V = W ⊕EA(λ) as

[B] =

[
L O
M K

]
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then showing (by induction and contraposition) that L(EA(λ),EA(λ)),L(W,W)
both being simultaneously lower triangularizable implies F simultaneously lower
triangularizable.
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Problem. 4. Transpose of a square matrix is similar to that matrix
Use Jordan Canonical Form Theorem to argue that the transpose J>λ,n of a
Jordan block Jλ,n is similar to Jλ,n, and then use this fact to argue that every
k × k complex matrix is similar to its transpose.

Solution. 4.

1. To show: J>λ,n ∼ Jλ,n. By Jordan Canonical Form Theorem, J>λ,n ∼⊕k
i=1 Jλi,mi

for some k, and
∑k
i=1mi = n. But since the only eigenvalue

of J>λ,n is λ (J>λ,n is lower triangular and has only λ’s on the diagonal),

J>λ,n ∼
⊕k

i=1 Jλ,mi
. Next, we observe that

J>λ,n − λI =


0
1

. . .

1 0


is a nilpotent of order n, which implies (J>λ,n − λI)l = O only if l ≥ n.
On the other hand,

(J>λ,n − λI)max(mi) =

(
k⊕
i=1

Jλ,mi − λI

)max(mi)

=

(
k⊕
i=1

J0,mi

)max(mi)

=

k⊕
i=1

(J0,mi)
max(mi)

=

k⊕
i=1

(Nmi
)
max(mi)

= O,

where each Nmi
is a nilpotent of order mi ≤ n, for any i ∈ {1, 2, . . . , k}.

Thus, max(mi) ≤ n ≤ max(mi), which holds if and only if max(mi) = n.
This means Jλ,max(mi) has size n, which implies it is the only summand
in the direct sum with non-zero size. So,

J>λ,n ∼
k⊕
i=1

Jλ,mi
= Jλ,n ⇐⇒ J>λ,n is similar to Jλ,n.

2. To show: A ∼ A> for any complex k×k matrix A. Let J ∼ A = B−1JB
be the Jordan form of A. From the previous part, J>λ,n ∼ Jλ,n, so

J =

k⊕
i=1

Jλi,mi
=

k⊕
i=1

F−1
i J

>
λi,mi

Fi =

k⊕
i=1

F−1
i

k⊕
i=1

J>i
k⊕
i=1

Fi = F−1J>F .
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So, we have J ∼ J> = (BAB−1)> = (B−1)>A>B> = (B>)−1A>B>,
which implies J ∼ A>. Therefore, A ∼ A> by transitivity.
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Problem. 5.

1. Argue that

lim
n→∞

(
5αn + 4nαn−1 + 3

n(n− 1)

2!
αn−2 + 2

n(n− 1)(n− 2)

3!
αn−3

+
n(n− 1)(n− 2)(n− 3)

4!
αn−4

)
=

{
0, if 0 ≤ α < 1
∞, if α ≥ 1

.

2. Argue that for m ≥ 2

lim
n→∞

‖(Jλ,n)
n‖2 =

{
0, if |λ| < 1
∞, if |λ| ≥ 1

Note that Jλ,m = λI +N , where N is a nice cyclic nilpotent of order m,
so that

(Jλ,m)
n

= (λI +N )
n

= λnI +

(
n

1

)
λn−1N +

(
n

2

)
λn−2N 2 + . . .

You may want to start with small m first, and calculate some (Jλ,m)
n
’s

using Mathematica. . .

Solution. 5.

1. For α = 0,

lim
n→∞

(
5αn + 4nαn−1 + 3

n(n− 1)

2!
αn−2 + 2

n(n− 1)(n− 2)

3!
αn−3 +

n(n− 1)(n− 2)(n− 3)

4!
αn−4

)
= lim
n→∞

(0) = 0.

For 0 < α < 1, for β = 1/α, β > 1

lim
n→∞

(
5αn + 4nαn−1 +

3n(n− 1)

2!
αn−2 +

2n(n− 1)(n− 2)

3!
αn−3 +

n(n− 1)(n− 2)(n− 3)

4!
αn−4

)
= lim
n→∞

(
5

βn
+

4n

βn−1
+

3n(n− 1)

2!βn−2
+

2n(n− 1)(n− 2)

3!βn−3
+
n(n− 1)(n− 2)(n− 3)

4!βn−4

)

We can rewrite this limit as a sum whose summands are of the form

lim
n→∞

p(n)

βn−j
= lim
n→∞

p(n)βj

βn

where j, β are fixed, β > 1, and p(n) is a polynomial in n with fixed pow-
ers. From Fact 0.5, each of these summand is zero. So, the limit being
evaluated is zero. Hence, for 0 ≤ α < 1, the limit is zero.
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For α ≥ 1,

lim
n→∞

(
5αn + 4nαn−1 +

3n(n− 1)

2!
αn−2 +

2n(n− 1)(n− 2)

3!
αn−3 +

n(n− 1)(n− 2)(n− 3)

4!
αn−4

)
= lim
n→∞

αn
(

5 +
4n

α
+

3n(n− 1)

2!α2
+

2n(n− 1)(n− 2)

3!α3
+
n(n− 1)(n− 2)(n− 3)

4!α4

)
= lim
n→∞

αnq(n), q(n) is the polynomial in n from the line above.

Let us consider q(n). For n /∈ {0, 1, 2, 3},

q(n) = n(n− 1)(n− 2)(n− 3)

(
5

n(n− 1)(n− 2)(n− 3)
+

4

(n− 1)(n− 2)(n− 3)α

+
3

2!(n− 2)(n− 3)α2
+

2

3!(n− 3)α3
+

1

4!α4

)
= n(n− 1)(n− 2)(n− 3)r(n).

So the limit we are evaluating becomes

lim
n→∞

αn · n(n− 1)(n− 2)(n− 3) · r(n).

If α = 1, then this limit is lim
n→∞

n(n− 1)(n− 2)(n− 3) · r(n). But since

lim
n→∞

n(n− 1)(n− 2)(n− 3) =∞

lim
n→∞

r(n) =
1

4!α4
,

we have

lim
n→∞

αn · n(n− 1)(n− 2)(n− 3) · r(n) =∞.

If α > 1, then lim
n→∞

αn =∞, so again,

lim
n→∞

αn · n(n− 1)(n− 2)(n− 3) · r(n) =∞.

Hence for α ≥ 1, the limit we are evaluating is ∞.
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2. We first observe that the sum

(Jλ,m)
n

= (λI +N )
n

= λnI +

(
n

1

)
λn−1N +

(
n

2

)
λn−2N 2 + . . .

is truncated at the term with Nm = O, since N is a nilpotent with order
m. Furthermore, we recognize that this sum can be written as

(Jλ,m)
n

=


λn

(
n
1

)
λn−1

(
n

m−1

)
λn−(m−1)

λn
. . .

. . .
(
n
1

)
λn−1

λn


where the coefficients on the diagonal come only from the term with I,
the coefficients just above the diagonal come only from the term with N ,
the coefficients two “diagonals” above the diagonal come only from the
term with N 2, and so on. This is because N has the form

N =


0 1

. . .
. . .

. . . 1
0

 ,

and different non-zero powers of N have only 1’s on different “diagonals.”

So, by counting and collecting like terms, we can rewrite the norm as

‖(Jλ,m)
n‖2 =

(
m|λn|2 + (m− 1)

(
n

1

)2∣∣λn−1
∣∣2 + · · ·+

(
n

m− 1

)2∣∣∣λn−(m−1)
∣∣∣2) 1

2

=

(
m|λ|2n + (m− 1)

(
n

1

)2

|λ|2(n−1)
+ · · ·+

(
n

m− 1

)2

|λ|2(n−(m−1))

) 1
2

=

(
m
(
|λ|2

)n
+ (m− 1)

(
n

1

)2

(|λ|2)(n−1) + · · ·+
(

n

m− 1

)2

(|λ|2)(n−(m−1))

) 1
2

∆
=

√
f(|λ|2, n),

where f(|λ|2, n) is a polynomial of (variable) degree n in |λ|2. If |λ| =

|λ|2 = 0 then f(|λ|2, n) = 0. Thus

lim
n→∞

‖(Jλ,m)
n‖2 = lim

n→∞

√
0 = 0.
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If |λ| < 1 then |λ|2 < 1. And if 0 < |λ|2 < 1 then by following a similar

argument as in Part 1., lim
n→∞

f(|λ|2, n) = 0. Thus

lim
n→∞

‖(Jλ,m)
n‖2 = lim

n→∞

√(
f(|λ|2, n)

)
= 0

Therefore, lim
n→∞

‖(Jλ,m)
n‖2 = 0 for |λ| < 1.

If |λ| ≥ 1 then |λ|2 ≥ 1. Again, by following a similar argument as in Part

1., we get lim
n→∞

(
f(|λ|2, n)

)
=∞, thus

lim
n→∞

‖(Jλ,m)
n‖2 = lim

n→∞

√(
f(|λ|2, n)

)
=∞

for |λ| ≥ 1. Note that if m = 1 then for |λ| = 1, lim
n→∞

‖(Jλ,m)
n‖2 = 1.
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Problem. 6.

1. Use logarithms and L’Hopital’s Rule to argue that for any α > 0,

lim
x→∞

(
5 + 4xα−1 + 3

x(x− 1)

2!
α−2 + 2

x(x− 1)(x− 2)

3!
α−3 +

x(x− 1)(x− 2)(x− 3)

4!
α−4

) 1
x

= 1.

2. Argue that

lim
n→∞

(
‖(Jλ,m)

n‖2
) 1

n = |λ|.

Solution. 6.

1. Let

f(x) = 5 + 4xα−1 + 3
x(x− 1)

2!
α−2 + 2

x(x− 1)(x− 2)

3!
α−3 +

x(x− 1)(x− 2)(x− 3)

4!
α−4.

It suffices to show

lim
x→∞

ln
(

(f(x))
1
x

)
= lim
x→∞

1

x
ln(f(x)) = ln(1) = 0.

By l’Hopital’s rule:

lim
x→∞

1

x
ln(f(x)) = lim

x→∞

d
dx ln(f(x))

dx
dx

= lim
x→∞

d

dx
ln(f(x)) = lim

x→∞

f ′(x)

f(x)
.

Since f ′(x) is a polynomial in x of degree 3, while f(x) is a polynomial in
x of degree 4,

lim
x→∞

f ′(x)

f(x)
= lim
x→∞

1

x
= 0.

Thus,

lim
x→∞

ln
(

(f(x))
1
x

)
= 0,

i.e.,

lim
x→∞

(f(x))
1
x = 1.
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2. From the previous problem, we have

‖(Jλ,m)
n‖2 =

(
m(|λ|2)n + (m− 1)

(
n

1

)2

(|λ|2)(n−1) + · · ·+
(

n

m− 1

)2

(|λ|2)(n−(m−1))

) 1
2

.

If |λ| = 0 then

‖(Jλ,m)
n‖2 = 0,

thus

lim
n→∞

(
‖(Jλ,m)

n‖2
) 1

n = lim
n→∞

0 = 0 = |λ|.

If |λ| > 0, by factoring out |λ|n, we get

‖(Jλ,m)
n‖2 = |λ|n

(
m+

(m− 1)
(
n
1

)2
|λ|2

+ · · ·+
(

n
m−1

)2
|λ|2(m−1)

) 1
2

.

Therefore,

(
‖(Jλ,m)

n‖2
) 1

n = |λ|

(m+
(m− 1)

(
n
1

)2
|λ|2

+ · · ·+
(

n
m−1

)2
|λ|2(m−1)

) 1
2


1
n

= |λ|

(m+
(m− 1)

(
n
1

)2
|λ|2

+ · · ·+
(

n
m−1

)2
|λ|2(m−1)

) 1
n


1
2

.

Let

f(n) = m+
(m− 1)

(
n
1

)2
|λ|2

+ · · ·+
(

n
m−1

)2
|λ|2(m−1)

.

We recognize that f(n) is a polynomial in n, similar to f(x) in Part 1.,
where we have argued that lim

x→∞
(f(x))1/x = 0. Thus,

lim
n→∞

(f(n))
1
n = 1,

which implies

lim
n→∞

√
(f(n))

1
n = 1

It follows that

lim
n→∞

(
‖(Jλ,m)

n‖2
) 1

n = |λ| · lim
n→∞

√
(f(n))

1
n = |λ| · 1 = |λ|.
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Problem. Extra credit 1

1. Suppose that [xn], [yn], [zn], [un] are sequences of positive numbers such
that [

(xn)
1
n

]
−→ α[

(yn)
1
n

]
−→ β[

(zn)
1
n

]
−→ γ[

(un)
1
n

]
−→ δ.

(a) Evaluate the limit of [
(αn + βn + γn + δn)

1
n

]
.

(b) Evaluate the limit of [
(xn + yn + zn + un)

1
n

]
.

2. Suppose that A =
⊕23

i=1 Jλi,mi . Evaluate the limit

lim
n→∞

(‖An‖2)
1
n .

Solution.

1. (a) Without loss of generality, let

max(α, β, γ, δ) = δ.

Thus, for some 0 < j, k, l < 1, we can write

α = jδ

β = kδ

γ = lδ,

so that

(αn + βn + γn + δn)
1
n = ((jδ)n + (kδ)n + (lδ)n + δn)

1
n

= δ (jn + kn + ln + 1)
1
n .

Since 0 < j < 1, lim
n→∞

jn = 0 (this follows from Fact 0.5, by writing

j as 1/j−1 where j−1 > 1). Repeating this argument for k, l, we get

lim
n→∞

(jn + kn + ln + 1) = 0 + 0 + 0 + 1 = 1. (†)
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Consider

Λ(n) = δ (jn + kn + ln + 1)
1
n .

Since Λ(n) > 0

Λ(n)

δ
= exp

[
ln
(

(jn + kn + ln + 1)
1
n

)]
= exp

[
1

n
ln(jn + kn + ln + 1)

]
.

By Eq. (†), and the fact that lim
n→∞

1/n = 0

lim
n→∞

1

n
ln (jn + kn + ln + 1) = 0.

Thus,

lim
n→∞

Λ(n)

δ
= e0 = 1,

i.e.,

lim
n→∞

Λ(n) = lim
n→∞

δ (jn + kn + ln + 1)
1
n = δ.

And so,

lim
n→∞

(αn + βn + γn + δn)
1
n = lim

n→∞
δ (jn + kn + ln + 1)

1
n = δ.

Therefore, the limit of [(αn+βn+γn+δn)1/n] is max(α, β, γ, δ).

(b) Let

Xn = (xn)
1
n

Yn = (yn)
1
n

Zn = (zn)
1
n

Un = (un)
1
n .

Then

[Xn] −→ α

[Yn] −→ β

[Zn] −→ γ

[Un] −→ δ
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and

(Xn)n = xn

(Yn)n = yn

(Zn)n = zn

(Un)n = un.

Then,

Λ(n) = (xn + yn + zn + un)
1
n = ((Xn)n + (Yn)n + (Zn)n + (Un)n)

1
n .

Without loss of generality, suppose max(Xn, Yn, Zn, Un) = Un as
n→∞, then for 0 < a, b, c < 1 we can write

lim
n→∞

Λ(n) = lim
n→∞

Un (an + bn + cn + 1)
1
n ,

where aXn = bYn = cZn = Un as n → ∞. From Part 1., we have
argued that for such a, b, c,

lim
n→∞

(an + bn + cn + 1)
1
n = 1.

Thus, if max(Xn, Yn, Zn, Un) = Un as n→∞, i.e., max(α, β, γ, δ) =
δ, then

lim
n→∞

Λ(n) = lim
n→∞

Un = δ.

Therefore, the limit of
[
(xn + yn + zn + un)

1
n

]
is max(α, β, γ, δ).

2. Let A =
⊕23

i=1 Jλi,mi
be given, then

lim
n→∞

(‖An‖2)
1
n = lim

n→∞

(∥∥∥∥∥
(

23⊕
i=1

Jλi,mi

)n∥∥∥∥∥
2

) 1
n

= lim
n→∞

(∥∥∥∥∥
23⊕
i=1

(Jλi,mi)
n

∥∥∥∥∥
2

) 1
n

= lim
n→∞


√√√√ 23∑

i=1

(
‖(Jλi,mi)

n‖2
)2

1
n

= lim
n→∞

( 23∑
i=1

(
‖(Jλi,mi

)
n‖2
)2) 1

n


1
2

From Problem 6., we know that

lim
n→∞

(
‖(Jλi,mi

)
n‖2
) 1

n = |λi|.
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So,

lim
n→∞

(
‖(Jλi,mi

)
n‖2
) 2

n = lim
n→∞

((
‖(Jλi,mi

)
n‖2
)2) 1

n

= |λi|2.

If
∥∥(Jλj ,mj

)n∥∥
2

is zero for some j, then (i) λj = 0, and (ii) we can drop
this term from the direct sum of operators (to A). Then, we can treat the

positive
(
‖(Jλi,mi

)
n‖2
)2

’s as elements of the sequences
[(
‖(Jλi,mi

)
n‖2
)2]

,

each converges to a corresponding |λi|2, i = 1, 2, . . . , k ≤ 23. Using the
result from Part 1., we get

lim
n→∞

(‖An‖2)
1
n = lim

n→∞

( 23∑
i=1

(
‖(Jλi,mi)

n‖2
)2) 1

n


1
2

=

√
max(|λi|2)

= max(|λi|)
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19.6 Problem set 6

Problem. 1.

1. Problem 20 in Exercises 6.A in Axler. Suppose V is a complex inner
product space. Prove that

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2 + ‖u+ iv‖2i− ‖u− iv‖2i

4

for all u, v ∈ V.

Solution. 1.1 We have

‖u+ v‖2 = 〈u+ v, u+ v〉 = 〈u, u+ v〉+ 〈v, u+ v〉 = 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉

‖u− v‖2 = 〈u− v, u− v〉 = 〈u, u− v〉 − 〈v, u− v〉 = 〈u, u〉 − 〈u, v〉 − 〈v, u〉+ 〈v, v〉

and

i‖u+ iv‖2 = i [〈u, u+ iv〉+ i〈v, u+ iv〉]
= i [〈u, u〉 − i〈u, v〉+ i〈v, u〉+ 〈v, v〉]
= i〈u, u〉+ 〈u, v〉 − 〈v, u〉+ i〈v, v〉

and

−i‖u− iv‖2 = i [〈u, u− iv〉 − i〈v, u− iv〉]
= −i [〈u, u〉+ i〈u, v〉 − i〈v, u〉+ 〈v, v〉]
= −i〈u, u〉+ 〈u, v〉 − 〈v, u〉 − 〈v, v〉.

Putting these terms together, we get

‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2 = 4〈u, v〉.

Thus,

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2 + ‖u+ iv‖2i− ‖u− iv‖2i

4

as desired.
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2. Problem 21 in Exercises 6.A in Axler. A norm on a vector space
U is a function ‖ ‖ : U → [0,∞) such that ‖u‖ = 0 if and only if u = 0,
‖αu‖ = |α|‖u‖ for all α ∈ F and all u ∈ U, and ‖u+ v‖ ≤ ‖u‖ + ‖v‖
for all u, v ∈ U. Prove that a norm satisfying the parallelogram equality
comes from an inner product (in other words, show that if ‖ ‖ is a norm
on U satisfying the parallelogram equality, then there is an inner product
〈, 〉 on U such that ‖u‖ = 〈u, u〉1/2 for all u ∈ U).

Solution. 1.2 We define 〈·, ·〉 : U×U→ F such that for u, v ∈ U,

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2 + ‖u+ iv‖2i− ‖u− iv‖2i

4
.

We will show that if ‖ ‖ is a norm on U satisfying the parallelogram
equality

‖u+ v‖2 + ‖u− v‖2 = 2
(
‖u‖2 + ‖v‖2

)
,

for any u, v ∈ U, then 〈·, ·〉 is an inner product on U such that ‖u‖ =
〈u, u〉1/2 for all u ∈ U. To show that 〈·, ·〉 is an inner product, we check
the following conditions:

(a) Positivity:

〈u, u〉 =
‖2u‖2 − ‖0‖2 + ‖(1 + i)u‖2i− ‖(1− i)u‖2i

4

=
4‖u‖2 + i|1 + i|2‖u‖2 − i|1− i|2‖u‖2i

4

=
4‖u‖2 + 2i‖u‖2 − 2i‖u‖2

4

= ‖u‖2 ≥ 0.

Thus, if 〈·, ·〉 is an inner product, then it is also one that gives ‖u‖ =
〈u, u〉1/2.

(b) Definiteness:

〈u, u〉 = ‖u‖2 = 0 ⇐⇒ u = 0.

(c) Additivity in first slot: Let w ∈ U be given. Here we want to use
the parallelogram equality to show additivity in first slot. Let α ∈ C
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be given, then

‖u+ αv‖2 + ‖w + αv‖2 =

∥∥∥∥2αv + u+ w

2
− w − u

2

∥∥∥∥2

+

∥∥∥∥2αv + u+ w

2
+
w − u

2

∥∥∥∥2

= 2

(∥∥∥∥2αv + u+ w

2

∥∥∥∥2

+

∥∥∥∥w − u2

∥∥∥∥2
)

= 2

(∥∥∥∥αv +
u+ w

2

∥∥∥∥2

+

∥∥∥∥w − u2

∥∥∥∥2
)

Thus,

4 (〈u, v〉+ 〈w, v〉) = ‖u+ v‖2 − ‖u− v‖2 + ‖u+ iv‖2i− ‖u− iv‖2i

+ ‖w + v‖2 − ‖w − v‖2 + ‖w + iv‖2i− ‖w − iv‖2i

=
(
‖u+ v‖2 + ‖w + v‖2

)
−
(
‖u− v‖2 + ‖w − v‖2

)
+ i
(
‖u+ iv‖2 + ‖w + iv‖2

)
− i
(
‖u− iv‖2 + ‖w − iv‖2

)
= 2

(∥∥∥∥v +
u+ w

2

∥∥∥∥2

+

∥∥∥∥w − u2

∥∥∥∥2
)
− 2

(∥∥∥∥u+ w

2
− v
∥∥∥∥2

+

∥∥∥∥w − u2

∥∥∥∥2
)

+ 2i

(∥∥∥∥iv +
u+ w

2

∥∥∥∥2

+

∥∥∥∥w − u2

∥∥∥∥2
)
− 2i

(∥∥∥∥−iv +
u+ w

2

∥∥∥∥2

+

∥∥∥∥w − u2

∥∥∥∥2
)

= 2

(∥∥∥∥u+ w

2
+ v

∥∥∥∥2

−
∥∥∥∥u+ w

2
− v
∥∥∥∥2

+ i

∥∥∥∥u+ w

2
+ iv

∥∥∥∥2

− i
∥∥∥∥u+ w

2
− iv

∥∥∥∥2
)

= 8

〈
u+ w

2
, v

〉
. (†)

Thus,

〈u, v〉+ 〈w, v〉 = 2

〈
u+ w

2
, v

〉
.

But we are not done yet. Since we don’t have “homogeneity in first

slot” yet, we have to show 8

〈
u+w

2 , v

〉
= 4〈u+w, v〉 by applying the

parallelogram equality again. For α ∈ C:

‖u+ w + αv‖2 + ‖αv‖2 =

∥∥∥∥(u+ w

2
+ αv

)
+
u+ w

2

∥∥∥∥2

+

∥∥∥∥(u+ w

2
+ αv

)
− u+ w

2

∥∥∥∥2

= 2

(∥∥∥∥u+ w

2
+ αv

∥∥∥∥2

+

∥∥∥∥u+ w

2

∥∥∥∥2
)
.
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Thus,

8

〈
u+ w

2
, v

〉
= 2

(∥∥∥∥u+ w

2
+ v

∥∥∥∥2

−
∥∥∥∥u+ w

2
− v
∥∥∥∥2

+ i

∥∥∥∥u+ w

2
+ iv

∥∥∥∥2

− i
∥∥∥∥u+ w

2
− iv

∥∥∥∥2
)

= 2

(∥∥∥∥u+ w

2
+ v

∥∥∥∥2

+

∥∥∥∥u+ w

2

∥∥∥∥2

−
∥∥∥∥u+ w

2
− v
∥∥∥∥2

−
∥∥∥∥u+ w

2

∥∥∥∥2

+i

∥∥∥∥u+ w

2
+ iv

∥∥∥∥2

+ i

∥∥∥∥u+ w

2

∥∥∥∥2

− i
∥∥∥∥u+ w

2
− iv

∥∥∥∥2

− i
∥∥∥∥u+ w

2

∥∥∥∥2
)

= ‖u+ w + v‖2 + ‖u+ w − v‖2 + i‖u+ w + iv‖2 − i‖u+ w − iv‖2

= 4〈u+ w, v〉. (††)

Hence, from (†) and (††),

〈u, v〉+ 〈w, v〉 = 〈u+ w, v〉

as desired.

(d) Conjugate symmetry: We want to show 〈u, v〉 = 〈v, u〉.

〈v, u〉 =
‖v + u‖2 − ‖v − u‖2 + ‖v + iu‖2i− ‖v − iu‖2i

4

=
‖u+ v‖2 − ‖u− v‖2 + ‖v + iu‖2i− ‖v − iu‖2i

4

=
‖u+ v‖2 − ‖u− v‖2 − i‖v + iu‖2 + i‖v − iu‖2

4

=
‖u+ v‖2 − ‖u− v‖2 − i‖v + iu‖2 + i‖v − iu‖2

4

=
‖u+ v‖2 − ‖u− v‖2 − i‖(−i)(v + iu)‖2 + i‖(−i)(v − iu)‖2

4

=
‖u+ v‖2 − ‖u− v‖2 − i‖u− iv‖2 + i‖u+ iv‖2

4
= 〈u, v〉.

(e) Homogeneity in first slot: For λ ∈ C, we want to show that
〈λu, v〉 = λ〈u, v〉.

Note to Leo: I was in the lab the entire Wednesday afternoon
so I couldn’t come to office hours for your advice on this part of the
problem. I tried using the definition of the inner product given above,
but I couldn’t “pull the λ out of 〈λa, b〉” to show that λ〈a, b〉 = 〈λa, b〉.
I figured that I could try showing homogeneity in first slot holds
for λ’s that are zero, positive integers, positive rationals, negative
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rationals, real numbers, and ultimately complex numbers. I don’t
know if this is a good idea. But at least I make some progress this
way...

i. If λ = 0, then 〈λu, v〉 = 〈0, v〉 = 0 = 0〈u, v〉 = λ〈u, v〉.
ii. If λ is a positive integer, then 〈λu, v〉 = λ〈u, v〉 by additivity.

iii. If λ is a positive rational number, then let λ = p/q where p, q ∈
N, p, q 6= 0. Then

〈λu, v〉 =

〈
p

q
u, v

〉
= p

〈
1

q
u, v

〉
.

Let u′ = 1
qu, then〈
u′, v

〉
=

〈
1

q
u, v

〉
=

〈
q

q
u′, v

〉
= q

〈
1

q
u′, v

〉
,

so,

1

q

〈
u′, v

〉
=

〈
1

q
u′, v

〉
.

Therefore,

〈λu, v〉 = λ〈u, v〉.

iv. If λ = −1, then since ‖a‖2 = ‖−a‖2:

〈−a,−a〉 =
‖−a− a‖2 − ‖−a+ a‖2 + i‖a+ ia‖2 − i‖a− ia‖2

4

=
4‖a‖2 + 2i‖u‖2 − 2i‖a‖2

4

= ‖a‖2

= 〈a, a〉,

we have

〈−u, v〉 =
‖−u+ v‖2 − ‖−u− v‖2 + i‖−u+ iv‖2 − i‖−u− iv‖2

4

=
‖u− v‖2 − ‖u+ v‖2 + i‖u− iv‖2 − i‖u+ iv‖2

4
= −〈u, v〉.

v. If λ = i, then

〈iu, v〉 =
‖iu+ v‖2 − ‖iu− v‖2 + i‖iu+ iv‖2 − i‖iu− iv‖2

4

= i

(
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

4

)
= i〈u, v〉.



178 CHAPTER 19. PROBLEMS AND SOLUTIONS

vi. The last step is to show that 〈λu, v〉 = λ〈u, v〉 still holds when λ
is any real number. Once this is shown, showing 〈λu, v〉 = λ〈u, v〉
will be much simpler.
But this is where I’m stuck. I’m hoping to somehow
express λ, a real number, in terms of rational numbers,
but I don’t know how.

vii. Assume that we have successfully completed the previous part,
then let λ = a+ ib where a, b ∈ R, then

〈λu, v〉 = 〈(a+ ib)u, v〉
= 〈au, v〉+ 〈ibu, v〉
= a〈u, v〉+ b〈iu, v〉
= a〈u, v〉+ ib〈u, v〉
= (a+ ib)〈u, v〉
= λ〈u, v〉.

(f) We can show that additivity in second slot can be derived from the
properties above:

〈a, b+ c〉 = 〈b+ c, a〉 = 〈b, a〉+ 〈c, a〉 = 〈b, a〉+ 〈c, a〉 = 〈a, b〉+ 〈a, c〉.

(g) Conjugate symmetry, homogeneity in first slot, and additivity in sec-
ond slot can combine to give partial conjugate linear in second slot.
Let a, b ∈ C and u, v, w ∈ U be given, then

〈u, av + bw〉 = 〈av + bw, u〉

= a〈v, u〉+ b〈w, u〉

= a〈v, u〉+ +b〈w, u〉
= a〈u, v〉+ b〈w, v〉.

So if we could show item (e.vi), then we would show that there exists 〈·, ·〉
on U that satisfies the hypothesis. This inner product is given by

〈u, v〉 =
‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2

4
.
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Problem. 2.

1. Problem 24 in Exercises 6.A in Axler. Suppose S ∈ L(V) is an
injective operator on V. Define 〈·, ·〉1 by

〈u, v〉1 = 〈Su, Sv〉

for all u, v ∈ V. Show that 〈·, ·〉1 is an inner product on V.

Solution. 2.1 We check if 〈Su, Sv〉 satisfies the conditions:

(a) Positiveness: Let u ∈ V be given, then Su = v ∈ V since S ∈
L(V). Thus,

〈u, u〉1 = 〈Su, Su〉 = 〈v, v〉 ≥ 0

since 〈·, ·〉 in an inner product on V.

(b) Definiteness: Let u ∈ V be given, then

0 = 〈u, u〉1 = 〈Su, Su〉 ⇐⇒ Su = 0 ⇐⇒ u = 0,

where the last equivalence statement is due to the injectivity of S.

(c) Additivity in first slot: Let u,w, v ∈ V be given, then

〈u+ w, v〉1 = 〈S(u+ w), Sv〉
= 〈Su+ Sw, Sv〉
= 〈Su, Sv〉+ 〈Sw, Sv〉
= 〈u, v〉1 + 〈w, v〉1,

where the third equality is due to 〈·, ·〉 being an inner product on V .

(d) Homogeneity in first slot:

〈αu, v〉1 = 〈S(αu), Sv〉 = 〈αSu, Sv〉 = α〈Su, Sv〉 = α〈u, v〉1,

where the last equality is due to 〈·, ·〉 being an inner product on V .

(e) Conjugate symmetry:

〈v, u〉1 = 〈Sv, Su〉 = 〈Su, Sv〉 = 〈u, v〉1,

where the second equality is due to 〈·, ·〉 being an inner product on
V .

2. Problem 25 in Exercises 6.A in Axler. Suppose S ∈ L(V) is not
injective. Define 〈·, ·〉1 as in the exercise above. Explain why 〈·, ·〉1 is not
an inner product on V.

Solution. 2.2 If S is not injective, then there exists a nonzero v ∈ V
such that Sv = 0, so that 〈v, v〉1 = 〈Sv, Sv〉 = 0 but v 6= 0. Thus, such S
makes 〈·, ·〉 fail to be an inner product.



180 CHAPTER 19. PROBLEMS AND SOLUTIONS

Problem. 3.

1. Problem 27 in Exercises 6.A in Axler. Suppose u, v, w ∈ V. Prove
that

∥∥∥∥w − 1

2
(u+ v)

∥∥∥∥2

=
‖w − u‖2 + ‖w − v‖2

2
− ‖u− v‖

2

4

Solution. 3.1 Let an inner product be defined as in Problem 21 such that
‖u‖ = 〈u, u〉1/2. Then we have

∥∥∥∥w − 1

2
(u+ v)

∥∥∥∥2

=

〈
w − 1

2
(u+ v), w − 1

2
(u+ v)

〉
=

〈
1

2
(w − u) +

1

2
(w − v),

1

2
(w − u) +

1

2
(w − v),

〉
.

Let a = (1/2)(w − u), b = (1/2)(w − v). a, b ∈ V. Then

∥∥∥∥w − 1

2
(u+ v)

∥∥∥∥2

= 〈a+ b, a+ b〉

= 〈a, a〉+ 〈a, b〉+ 〈b, a〉+ 〈b, b〉
= 〈a, a〉+ 〈a, b− a+ a〉+ 〈b, a− b+ b〉+ 〈b, b〉
= 2〈a, a〉+ 〈a, b− a〉+ 〈b, a− b〉+ 2〈b, b〉
= 2〈a, a〉+ 〈a, b− a〉+ 〈−b, b− a〉+ 2〈b, b〉
= 2〈a, a〉+ 〈a− b, b− a〉+ 2〈b, b〉

= 2

〈
1

2
(w − u),

1

2
(w − u)

〉
+

〈
1

2
(v − u),

1

2
(u− v)

〉
+ 2

〈
1

2
(w − v),

1

2
(w − v)

〉
=

1

2
〈w − u,w − u〉 − 1

4
〈u− v, u− v〉+

1

2
〈w − v, w − v〉

=
‖w − u‖2 + ‖w − v‖2

2
− ‖u− v‖

2

4
.

We can also use the parallelogram equality to solve this problem. Again,
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let a = (1/2)(w − u) and b = (1/2)(w − v), then

‖w − u‖2 + ‖w − v‖2

2
− ‖u− v‖

2

4
= 2

(
‖a‖2 + ‖b‖2

)
− ‖b− a‖2

= 2

(∥∥∥∥a+ b

2
− b− a

2

∥∥∥∥2

+

∥∥∥∥a+ b

2
+
b− a

2

∥∥∥∥2
)
− ‖b− a‖2

= ‖a+ b‖2 + ‖b− a‖2 − ‖b− a‖2

= ‖a+ b‖2

=

∥∥∥∥w − 1

2
(u− v)

∥∥∥∥2

.
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2. Problem 28 in Exercises 6.A in Axler. Suppose C is a subset of V
with the property that u, v ∈ C implies 1

2 (u+ v) ∈ C. Let w ∈ V. Show
that there is at most one point in C that is closest to w. In other words,
show that there is at most one u ∈ C such that

‖w − u‖ ≤ ‖w − v‖ for all v ∈ C.

Hint: Use the previous exercise.

Solution. 3.2 We prove by contradiction. Suppose there are more than
one such vector in C. Let these vectors be a, b, a 6= b, then we have

‖w − a‖ ≤ ‖w − v‖ for all v ∈ C
‖w − b‖ ≤ ‖w − v‖ for all v ∈ C.

This implies

‖w − a‖ ≤ ‖w − b‖ and ‖w − b‖ ≤ ‖w − a‖ ⇐⇒ ‖w − a‖ = ‖w − b‖.

Now, since a, b ∈ C, (1/2)(a+ b) ∈ C. Thus, by the previous problem∥∥∥∥w − 1

2
(a+ b)

∥∥∥∥2

=
‖w − a‖2 + ‖w − b‖2

2
− ‖a− b‖

2

4

= ‖w − a‖2 − ‖a− b‖
2

4

< ‖w − a‖2.

So, ∥∥∥∥w − 1

2
(a+ b)

∥∥∥∥ < ‖w − a‖.
Clearly, for v = (1/2)(a+ b), ‖w − a‖ > ‖w − (1/2)(a+ b)‖. This contra-

dicts the choice of a since ‖w − a‖2 must be less than or equal to ‖w − v‖2
for any v ∈ C. Thus, there is at most one vector in C that meets the hy-
pothesis.
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Problem. 4.

1. Use Cauchy-Schwarz inequality to show that

α1 + α2 + · · ·+ αn ≤
√
n ·
√
α2

1 + α2
2 + · · ·+ α2

n

for any non-negative αi.

Solution. 4.1 Let the vectors α, ε ∈ Cn be given, where α =
(
α1 α2 . . . αn

)>
and ε =

(
1 1 . . . 1

)>
, αi are non-negative. Consider the standard in-

ner product 〈·, ·〉 on V. Then we have

‖α‖2 = |α1|2 + |α2|2 + · · ·+ |αn|2 = α2
1 + α2

2 + . . . α2
n

‖e‖2 = 12 + 12 + . . . 12︸ ︷︷ ︸
n times

= n

|〈α, ε〉| = α1 · 1 + α2 · 1 + · · ·+ αn · 1 = α1 + α2 + · · ·+ αn

Hence, the Cauchy-Schwarz inequality∣∣〈α, ε〉∣∣ ≤ ‖α‖ · ‖e‖
implies that

α1 + α2 + · · ·+ αn ≤
√
n ·
√
α2

1 + α2
2 + . . . α2

n

as desired.
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2. Problem 14 in Exercises 6.B in Axler Suppose e1, . . . , en is an or-
thonormal basis of V and v1, . . . , vn are vectors in V such that

‖ej − vj‖ <
1√
n

for each j. Prove that v1, . . . , vn is a basis of V.

Solution. 4.2 To show that v1, . . . , vn is a basis of V, we can show
v1, . . . , vn make an linearly independent list and span V. However, this
would be redundant since if v1, . . . , vn is linearly independent then dim(span(v1, . . . , vn)) =
n = dim(V), and because span(v1, . . . , vn) ≺ V, this says span(v1, . . . , vn) =
V, hence v1, . . . , vn is a basis for V. So, it suffices to show v1, . . . , vn is a
linearly independent list. We will do this by contradiction.

Suppose for some aj 6= 0, j = 1, 2, . . . , n,

n∑
j=1

ajvj = 0.

This means

∥∥∥∥∥∥
n∑
j=1

aj(ej − vj)

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
j=1

ajej −
n∑
j=1

ajvj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑
j=1

ajej

∥∥∥∥∥∥
2

=

〈 n∑
j=1

ajej ,

n∑
i=1

aiei

〉

=

n∑
j=1

n∑
i=1

〈ajej , aiei〉

=

n∑
j=1

|aj |2.
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But we also have∥∥∥∥∥∥
n∑
j=1

aj(ej − vj)

∥∥∥∥∥∥
2

=

〈 n∑
j=1

aj(ej − vj),
n∑
i=1

ai(ei − vi)
〉

︸ ︷︷ ︸
real

=

n∑
j=1

n∑
i=1

〈
aj(ej − vj), ai(ei − vi)

〉
︸ ︷︷ ︸

real

≤
n∑
j=1

n∑
i=1

∣∣∣∣〈aj(ej − vj), ai(ei − vi)〉∣∣∣∣,
where∣∣∣∣〈aj(ej − vj), ai(ei − vi)〉∣∣∣∣ ≤ ‖aj(ej − vj)‖ · ‖ai(ei − vi)‖ Cauchy-Schwarz inequality

= |aj | · |ai| · ‖ej − vj‖ · ‖ei − vi‖

< |aj | · |ai| ·
1√
n
· 1√

n
by hypothesis

= |aj | · |ai| ·
1

n
.

Thus, ∥∥∥∥∥∥
n∑
j=1

aj(ej − vj)

∥∥∥∥∥∥
2

<

n∑
j=1

n∑
i=1

|aj | · |ai| ·
1

n

=
1

n

n∑
j=1

n∑
i=1

|aj | · |ai|

=
1

n

 n∑
j=1

|aj |

2

.

By the previous problem, we know that n∑
j=1

|aj |

2

≤

√n ·
√√√√ n∑

j=1

|aj |2
2

= n ·
n∑
j=1

|aj |2.

Therefore, ∥∥∥∥∥∥
n∑
j=1

aj(ej − vj)

∥∥∥∥∥∥
2

<

n∑
j=1

|aj |2.
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But we have shown that∥∥∥∥∥∥
n∑
j=1

aj(ej − vj)

∥∥∥∥∥∥
2

=

n∑
j=1

|aj |2,

so we have a contradiction. Hence,
∑n
j=1 ajvj = 0 if and only if aj = 0

for all j = 1, 2, . . . , n, i.e., v1, v2 . . . , vn is a linearly independent list. So,
v1, v2, . . . , vn is a basis for V.
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Problem. 5.

1. Suppose that z1, z2, . . . , zn is an orthonormal list of elements of a (not
necessarily finite-dimensional) vector space V, and w is an element of V
that is not in the span of z1, z2, . . . , zn. Use Gramians to argue that
there is an element y ∈ V such that z1, z2, . . . , zn, y is an orthonormal list
and

span(z1, z2, . . . , zn, y) = span(z1, z2, . . . , zn, w).

Solution. 5.1 Let w and the zi’s be given. We first want to show that
there exists y ∈ V such that 〈y, zi〉 = 0 for any i = 1, 2, . . . , n. Consider

y = w − α1z1 − α2z2 − · · · − αnzn.

We first observe that y 6= 0 because w /∈ span(z1, . . . , zn) and thus ‖y‖ 6= 0.
Next, we want to show there exist α1, α2, . . . , αn ∈ C such that

〈y, zi〉 = 0 = 〈w − α1z1 − α2z2 − · · · − αnzn, zi〉

for any i ∈ {1, 2, . . . , n}. But this is equivalent to showing there exist
α1, α2, . . . , αn ∈ C such that

〈w, zi〉 = α1〈z1, zi〉+ . . . αn〈zn, zi〉

for any i ∈ {1, 2, . . . , n}, i.e.,

Gramian(γ) =

〈z1, z1〉 . . . 〈zn, z1〉
...

. . .
...

〈z1, zn〉 . . . 〈zn, zn〉


α1

...
αn

 =

〈w, z1〉
...

〈w, zn〉

 ,

where γ =
(
α1 . . . αn

)>
, has a unique solution, i.e. the Gramian

matrix is invertible. But since the Gramian matrix is square, it suffices to
show it is injective. Suppose Gramian(γ) = 0. Then,

n∑
i=1

αi〈zi, z1〉 = · · · =
n∑
i=1

αi〈zi, zn〉 = 0,

which means
∑n
i=1 αizi ⊥ z1, . . . , zn. In particular,

∑n
i=1 αizi ⊥

∑n
i=1 αizi ⇐⇒∑n

i=1 αizi = 0. But since the zi’s are nonzero vectors (because each has
length 1), αi = 0 for all i ∈ {1, 2, . . . , n}. This shows the Gramian is
injective and therefore invertible.

So, we have shown that there exist α1, . . . , αn ∈ C such that y as given
above is orthogonal to all the zi’s. Thus, the normalized y, denoted yN
and defined as

yN =
w − α1z1 − α2z2 − · · · − αnzn
‖w − α1z1 − α2z2 − · · · − αnzn‖
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is not only orthogonal to all zi’s but also has length 1. Hence, z1, . . . , zn, yN
form an orthonormal list.

Now, consider the subspaces span(z1, . . . , zn, yN ) and span(z1, . . . ,n , w).
By definition,

span(z1, . . . , zn, yN ) =

{
a1z1 + . . . anzn + byN

∣∣∣∣a1, . . . , an, b ∈ C

}
span(z1, . . . , zn, w) =

{
a1z1 + . . . anzn + bw

∣∣∣∣a1, . . . , an, b ∈ C

}
.

But for y = ‖y‖yN = w − α1z1 − α2z2 − · · · − αnzn,

w = α1z1 + · · ·+ αnzn + y = α1z1 + · · ·+ αnzn + ‖y‖yN .

So,

span(z1, . . . , zn, w) =

{
c1z1 + · · ·+ cnzn + dyN

∣∣∣∣c1, . . . , cn, d ∈ C

}
= span(z1, . . . , zn, yN ).

Therefore, given w ∈ V and the zi’s, we have shown there exists a vector
y ∈ V that satisfies all the requirements. In particular,

y =
w − α1z1 − α2z2 − · · · − αnzn
‖w − α1z1 − α2z2 − · · · − αnzn‖
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2. Problem 2 in Exercises 6.B in Axler Suppose e1, . . . , em is an or-
thonormal list of vectors in V. Let v ∈ V. Prove that

‖v‖2 = |〈v, e1〉|2 + · · ·+ |〈v, em〉|2

if and only if v ∈ span(e1, . . . em).

Solution. 5.2

(a) To show: ‖v‖2 = |〈v, e1〉|2+· · ·+|〈v, em〉|2 =⇒ v ∈ span(e1, . . . , em).
Assume that v ∈ V is not in span(e1, . . . , em), then by the previous
problem, there exists an element y ∈ V such that e1, e2, . . . , em, y is
an orthonormal list and

span(e1, e2, . . . , em, y) = span(e1, e2, . . . , em, v).

Then we can write

v = βy +

m∑
i=1

αiei

for α1, . . . , αm, β ∈ C, and β 6= 0 since otherwise v ∈ span(e1, e2, . . . , em).
Then,

〈v, ei〉 = αi

and thus

‖v‖2 =

〈
βy +

m∑
i=1

αiei, βy +

m∑
j=1

αjej

〉

= |β|2 +

m∑
i=1

|αi|2

= |β|2 +

m∑
i=1

|〈v, ei〉|2

= |β|2 + ‖v‖2, by hypothesis.

Therefore, β = 0. We have a contradiction. Thus, v ∈ span(e1, . . . em)
as desired.

(b) To show: v ∈ span(e1, . . . , em) =⇒ ‖v‖2 = |〈v, e1〉|2 + · · · +
|〈v, em〉|2. Let v ∈ V be given, then

v =

m∑
i=1

αiei,

where α1, . . . , αm ∈ C. Thus,

‖v‖2 =

〈 m∑
i=1

αiei,

m∑
j=1

αjej

〉
=

m∑
i=1

|αi|2.
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We also know that

〈v, ei〉 =

〈 m∑
j=1

αjej , ei

〉
= αi.

Hence,

‖v‖2 =

m∑
i=1

|〈v, ei〉|2,

as desired.
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19.7 Problem set PRACTICE

Problem. 1. Shuttling Inner Products

1. Suppose that (V, 〈·, ·〉) is a finite-dimensional inner product space (fdips)
with an orthogonal basis Γ. Let A : Cn → V be the atrix corresponding
to Γ. Prove that:

〈v, w〉 = A−1(v) · A−1(w)

for every v, w ∈ V, where · is the standard inner product.

2. Suppose that V and W are fdips with ortho-bases Γ and Ω respectively,
and  L : V→W is a linear function. Prove that [L∗]Γ←Ω is the conjugate
transpose of [L]Ω←Γ.
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Problem. 2. Isometries Suppose that V and W are inner product spaces,
and L : V→W is a linear function.

1. Argue that the following claims are equivalent.

(a) L is an isometry; i.e., ‖L(v)‖W = ‖v‖V, for all v ∈ V.

(b) 〈L(v),L(z)〉W = 〈v, z〉V for all v, z ∈ V.

(c) L∗L = IV.

(d) ‖L(v)‖W = 1, for every unit vector v ∈ V.

2. Argue that the following claims are equivalent.

(a) L is a scalar multiple of an isometry.

(b) ‖L(v)‖W = ‖L(z)‖W for any unit vectors v, z ∈ V.

(c) L preserves orthogonality; i.e., if 〈v, z〉V = 0 then 〈L(v),L(z)〉W = 0.

3. Suppose that V and W are fdips with orthonormal bases Γ and Ω respec-
tively. Argue that L is an isometry if and only if the columns of [L]Ω←Γ

are orthonormal.
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Problem. 3. Unitaries Suppose that V is an inner product space, and L :
V→ V is a linear function.

1. Argue that the following claims are equivalent.

(a) L is unitary.

(b) L is invertible, and L−1 = L∗.

2. Argue that the following are equivalent in the case that V is fdips, and Γ
is an orthonormal basis of V.

(a) L is unitary.

(b) The columns of [L]Γ←Γ form an orthonormal basis (of the appropriate
Cn).
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Problem. 4. Unitary Equivalence for Matrices Let V be an n−dimensional
inner product space.

1. Suppose that Γ and Ω are two orthonormal bases of V. Argue that [I]Ω←Γ

is a unitary matrix.

2. Argue that for each unitary matrix U in Mn there exist orthonormal bases
Γ and Ω of V such that U = [I]Ω←Γ.

3. Suppose that A,B ∈ Mn. Argue that the following claims are equivalent.

(a) There exists a linear function L : V → V and orthonormal bases Γ
and Ω of V such that

A = [L]Γ←Γ and B = [L]Ω→Ω.

(b) There exists a unitary matrix U in Mn such that

B = U−1AU .
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Problem. 5. Properties of Unitary Similarity/Equivalence

1. Argue that unitary equivalence is an equivalence relation on L(V,V).

2. Argue that unitary equivalence preserves normality, “unitariness” and
“self-adjoint-ness.”
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Problem. 6. Spectral Theorem

1. Argue that the following claims are equivalent for a square matrix A.

(a) A is normal.

(b) A is unitarily equivalent to a diagonal matrix.

2. Argue that the following claims are equivalent for a square matrix B.

(a) B is unitary.

(b) B is unitarily equivalent to a diagonal matrix with diagonal entries
of modulus 1.

3. Argue that the following claims are equivalent for a square matrix C.

(a) C is self-adjoint.

(b) C is unitarily equivalent to a diagonal matrix with real entries.
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Problem. 7. Spectral Theorem For Normal Linear Operators Suppose
that V is an fdips, and L is a linear operator on V. Prove each of the following
claims.

1. L is normal if and only if V has an orthonormal basis comprised of the
eigenvectors of L.

2. L is unitarily if and only if L is normal, and all eigenvalues of L have
modulus 1.

3. L is self-adjoint if and only if L is normal, and all eigenvalues of L are
real.
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Problem. 8. Diagonalizability and LInear Combinations of Mutually
Annihilating Idempotents Suppose that G1,G2, . . . ,Gp are idempotent linear
operators on a vector space V, such that

GiGj = O,

whenever i 6= j. In this case we say that the Gi’s are mutually annihilating
idempotents.

1. Argue that G1 + G2 + . . .Gp is an idempotent and infer that

α1G1 + α2G2 + . . . αpGp

is a diagonalizable operator.

2. Argue that a linear operator on V is diagonalizable exactly when it is a
linear combination of some mutually annihilating idempotent operators.
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Problem. 9. Atomic Spectral Idempotents are Polynomials in L Sup-
pose that V is a finite-dimensional vector space, and L is a diagonalizable linear
operator on V with

σC{L} = {λ1, λ2, . . . , λk}.

Argue that each corresponding atomic spectral idempotent Ei of L can be ex-
pressed as pi(L), for the unique polynomial pi of degree at most k − 1 which
maps λi to 1, and all other eigenvalues of L to zero.
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Problem. 10. Uniqueness of Spectral Resolution Suppose that V is a
finite-dimensional vector space, and L is a diagonalizable linear operator on V
with

σC{L} = {λ1, λ2, . . . , λk}.

1. Suppose that

L = γ1F1 + γ2F2 + . . . γmFm,

for some idempotents F1,F2, . . . ,Fm which resolve the identity on V, and
some distinct complex numbers γ1, γ2, . . . , γm. Argue that m = k, that

σC{L} = {λ1, λ2, . . . , λk} = {γ1, γ2, . . . , γk}

and that F1,F2, . . . ,Fk are the atomic spectral idempotents of L.

2. Explain how one discerns the atomic spectral idempotents and the eigenspaces
of L from any L−eigenbasis of V. Justify your claims.
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Problem. 11. Spectral Resolutions of Normal Operators Suppose that
V is an fdips, that L is a normal linear operator on V with

σC{L} = {λ1, λ2, . . . , λk}.

1. Argue that every atomic spectral idempotent of L is normal, and conclude
that every normal spectral idempotent of L is a non-negative (i.e., positive
semi-definite) operator.

Non-negative idempotents are said to be ortho-projections or projec-
tions, for short.

2. Argue that

V = Eλ1
⊕Eλ2

⊕ · · · ⊕Eλk
,

where Eλi
is the eigenspace of L corresponding to the eigenvalue λ, where

the Eλi
are mutually orthogonal subspaces.
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Problem. 12. Another Form of the Spectral Theorem for Normal
Operators Suppose that V is an fdips, that L is a linear operator on V. Argue
that the following claims are equivalent.

1. L is normal.

2. L is a linear combination of ortho-projections that resolve the identity on
V.

3. L is a linear combination of mutually annihilating projections.



19.7. PROBLEM SET PRACTICE 203

Problem. 13. Commuting with a Normal Suppose that V is an fdips,
that L is a normal linear operator on V. Argue that the following claims are
equivalent for an operator M on V.

1. M commutes with L.

2. M commutes with every atomic spectral projection of L.
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Problem. 14. Another Polarization Identity Suppose that L is a linear
operator on an inner project space V.

1. Argue that

4〈L(x), y〉 = 〈L(x+ y), x+ y〉 − 〈L(x− y), x− y〉
+i〈L(x+ iy), x+ iy〉 − i〈L(x− iy), x− iy〉.

2. Infer that

〈L(z), zL = 0

for all z ∈ V if and only if L = 0, and that for an operator M on V,

〈L(z), z〉 = 〈M(z), z〉,

for all z ∈ V if and only if L =M.
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Problem. 15. Non-negativity (and Positivity) Conditions I Suppose
that V is an fdips, and L is a linear operator on V. Prove each of the following
claims.

1. L is non-negative if and only if L is normal, and all eigenvalues of L are
non-negative.

2. L is positive if and only if L is normal, and all eigenvalues of L are positive.

3. L is non-negative if and only if L is self-adjoint, and all eigenvalues of L
are non-negative.

4. L is positive if and only if L is non-negative and invertible.
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Problem. 16. Non-negativity Conditions II Suppose that V is an fdips,
and L is a linear operator on V. Prove that the following claims are equivalent.

1. L is non-negative.

2. L = N 2 for some non-negative operator N on V.∗

3. L =M2 for some self-adjoint operators M on V.

4. L = T ∗T for some operator T on V.

5. L = KK∗ for some operator K on V.

∗Such an N is said to be a non-negative square root of L
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Problem. 17. Suppose that V is an fdips, and L is a non-negative linear
operator on V. Argue that for any x ∈ V the following claims are equivalent.

1. L(x) = 0.

2. 〈L(x), x〉 = 0.

3.
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Problem. 18. Non-negativity Conditions for Matrices

1. Argue that the following claims are equivalent for a square matrix P.

(a) P is non-negative.

(b) P is unitarily equivalent to a diagonal matrix with non-negative di-
agonal entries.

2. Argue that the following claims are equivalent for a square matrix P.

(a) P is positive.

(b) P is unitarily equivalent to a diagonal matrix with positive diagonal
entries.
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Problem. 19. Properties of
√
L∗L and

√
LL∗ Suppose that V and W are

fdips, and L : V→W is a linear operator. Argue that

1. ∥∥∥√L∗L(x)
∥∥∥ = ‖L(x)‖, for all x ∈ V and∥∥∥√LL∗(y)
∥∥∥ = ‖L∗(y)‖, for all y ∈ V

2.

ker(
√
L∗L) = ker(L) and

ker(
√
LL∗) = ker(L∗).

3.

Im(
√
L∗L) = Im(L∗) and

Im(
√
LL∗) = Im(L).



210 CHAPTER 19. PROBLEMS AND SOLUTIONS

19.8 Review Problems

Problem. 1. Suppose that V is a finite-dimensional vector space, and Ei :

V
linear−→ V are idempotents such that

E1 + E2 + . . . En = IV.

Prove that these idempotents are mutually annihilating.
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Problem. 2. Suppose that V and W are inner product spaces, and L : V→W
is a linear function.

1. Argue that the following claims are equivalent:

(a) L is an isometry; i.e., ‖Lv‖W = ‖v‖V for all v ∈W.

(b) 〈Lv,Lz〉W = 〈v, z〉V for all v, z ∈ V.

(c) L∗L = IV.

(d) ‖Lw‖ = 1, for every unit vector v ∈ V.

2. Argue that the following claims are equivalent:

(a) L is a scalar multiple of an isometry.

(b) ‖Lv‖W = ‖Lz‖W, for any unit vectors v, z ∈ V.

(c) L preserves orthogonality; i.e., if 〈v, z〉V = 0 then 〈Lv,Lz〉W = 0.

3. Suppose that V and W are finite-dimensional inner product spaces with
orthonormal bases Γ and Ω respectively. Argue that L is an isometry if
and only if the columns of [L]Ω←Γ are orthonormal.
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Problem. 3. Suppose that V is a finite-dimensional vector space, and Ei :
V→ V are idempotents such that

E1 + E2 + . . . En = IV.

Prove that

Im(E1)⊕ Im(E2)⊕ · · · ⊕ Im(En) = V,

and then argue that every decomposition of V as a direct sum of four subspaces
can be obtained this way.
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Problem. 4. Let V be an n−dimensional product space.

1. Suppose that Γ and Ω are two orthonormal bases of V. Argue that [I]Ω←Γ

is a unitary matrix.

2. Argue that for each unitary matrix U in Mn there exist orthonormal bases
Γ and Ω of V such that U = [I]Ω←Γ.

3. Suppose that A,B ∈ Mn. Argue that the following claims are equivalent:

(a) There exists a linear function L : V → V and orthonormal bases Γ
and Ω of V such that

A = [L]Γ←Γ and B = [L]Ω←Ω.

(b) There exists a unitary matrix U in Mn such that

B = U−1AU .
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Problem. 5. Suppose that V is a vector space, and E ∈ L(V). Prove that the
following claims are equivalent:

1. E2 = E .

2. Im(E) = {v ∈ V|Ev = v}.

3. Im(E) = ker(I − E).

4. I − E is an idempotent.

5. ker(E) = Im(I − E).
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Problem. 6. Suppose that V is a finite-dimensional inner product space and
L ∈ L(V). Prove that the following claims are equivalent.

1. L is normal.

2. V has an orthonormal basis comprised of the eigenvectors of L.

3. L is a linear combination of projections that resolve the identity on V.

4. L is a linear combination of mutually annihilating projections.
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Problem. 7. Suppose that V is an finite-dimensional inner product space.

1. Suppose that A ∈ L(V) is normal. Prove that

Im(A) = ker⊥(A).

2. Prove that the following claims are equivalent for an idempotent E ∈ L(V).

(a) E is positive semi-definite.

(b) E is self-adjoint (i.e. is a projection).

(c) E is normal.

(d) Im(E) = ker⊥(E).
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Problem. 8. Suppose that V is an finite-dimensional inner product space and
L ∈ L(V). Prove each of the following claims.

1. L is unitary if and only if L is normal, and all eigenvalues of L have
modulus 1.

2. L is self-adjoint if and only if L is normal, and all eigenvalues of L are
real.

3. L is positive semi-definite if and only if L is normal, and all eigenvalues
of L are non-negative.

4. L is positive definite if and only if L is normal, and all eigenvalues of L
are positive.
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Problem. 9. Here V is a finite-dimensional inner product space.

1. Suppose that Ei : V→ V are projections such that

E1 + E2 + E3 + E4 = IV.

Prove that

Im(E1) ⊥©Im(E2) ⊥©Im(E3) ⊥©Im(E4) = V

and then argue that every decomposition of V as an orthogonal direct
sum of four subspaces can be obtained this way.

2. Suppose that P ∈ L(V) is a projection with range W. Prove that for each
v ∈ V,P(v) is the element of W that is closest to v.
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Problem. 10. Suppose that V is a finite-dimensional vector space, and L is a
diagonalizable linear operator on V with

σC(L) = {λ1, λ2, . . . , λk}.

Suppose that

L = γ1F1 + γ2F2 + . . . γmFm

for some idempotents F1,F2, . . . ,Fm which resolve the identity on V, and some
distinct complex numbers γ1, γ2, . . . , γm. Argue that m = k, that

σC(L) = {λ1, λ2, . . . , λk} = {γ1, γ2, . . . , γm}

and tat F1,F2, . . . ,Fm are the atomic spectral idempotents of L.

Explain how one discerns the atomic spectral idempotents and the eigenspaces
of L from any L-eigenbasis of V. Justify your claims.
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Problem. 11. Suppose that V is a vector space, and T ∈ L(V). Prove that

V = T −1[W] + T −1[Z],

whenever W and Z are subspaces of V such that

Im(T ) = W + Z.
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Problem. 12. Here V is a 15-dimensional vector space, and L ∈ L(V). Prove
that

V = ker(L15)⊕ Im(L15).
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Problem. 13. Suppose that V is a finite-dimensional vector space, and L ∈
L(V). Prove that for any polynomial p,

σC(p(L)) = {p(λ)|λ ∈ σC(L)}.
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Problem. 14. Suppose that p1 and p2 are relatively prime non-constant poly-
nomials of degrees m and n respectively. Consider the function

ψ : Pn−1 × Pm−1 → Pm+n−1

defined by

ψ

(
f
g

)
= f · p1 − g · p2.

Verify each of the following claims.

1. ψ is a linear function.

2. ψ is injective.

3. ψ is surjective.

4. There exist polynomials q1 and q2 such that

q1 · p2 + q2 · p2 = 1,

where 1 is the constantly 1 polynomial.
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Problem. 15. Here V an a finite-dimensional inner product space and L ∈
L(V). Prove each of the following claims.

1. L is self-adjoint exactly when

〈Lx, x〉 ∈ R, for all x ∈ V.

2. If L is self adjoint, so is M∗LM.

3. If L is positive semi-definite, so if M∗LM.

4. If W is an finite dimensional inner product space and M ∈ L(V,W),
then M∗M and MM∗ are positive semi-definite.
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Problem. 16. Suppose that V is a finite-dimensional vector space, and V1,V2, . . . ,Vn

are subspaces of V. Prove that the following claims are equivalent.

1. The subspace sum V1 + V2 + · · ·+ V315 is direct.

2. If xi ∈ Vi and

x1 + x2 + · · ·+ x315 = 0W,

then xi = 0W for every i.

3. If xi, yi ∈ Vi and

x1 + x2 + · · ·+ x315 = y1 + y2 + · · ·+ y315,

then xi = yi, for every i.

4. For any i, no non-null element of Vi can be expressed as a sum of the
elements of the other V′js.

5. For any i, no non-null element of Vi can be expressed as a sum of the
elements of the preceding Vi’s.

6. dim(V1 + V2 + · · ·+ V315) = dim(V1) + dim(V2) + · · ·+ dim(V315).
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Problem. 17. Suppose that V and W are finite-dimensional inner product
spaces, and L : V→W is a linear function. Argue that

1.
∥∥∥√L∗Lx∥∥∥ = ‖Lx‖, for all x ∈ V and

∥∥∥√LL∗y∥∥∥ = ‖L ∗ y‖, for all y ∈W.

2. ker(
√
L∗L) = ker(L) and ker(

√
LL∗) = ker(L∗).

3. Im(
√
L∗L) = Im(L∗) and Im(

√
LL∗) = Im(L).
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Problem. 18. Suppose that W is a non-{0} ideal in the vector space P. Prove
that there exists a unique monic polynomial p0 such that

W = {q · p0|q ∈ P}.
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Problem. 19.

1. Here V is an finite-dimensional inner product space and L ∈ L(V). Prove
that

√
L∗L is unitarily equivalent to

√
LL∗, and that L∗L is unitarily

equivalent to LL∗.

2. Suppose that A ∈ Mm×n. Since
√
A∗A and

√
AA∗ are positive semi-

definite, each is unitarily similar to a positive semi-definite diagonal ma-
trix; say D and F , respectively. Proce that D and F have exactly the same
positive diagonal entries and each of these is repeated the same number
of times in D as in F .
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Problem. 20. Suppose that V1,V2, . . . ,Vn are subspaces of a vector space
V. Prove that the following are equivalent:

1. V1 ∪V2 ∪ · · · ∪Vn is a subspace of V.

2. One of the Vi’s contains all the others.
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Problem. 21. Here V is a finite-dimensional inner product space and L ∈
L(V). Prove that there is a unitary U ∈ L(V) such that

L = U
√
L∗L,

and that for any such U , we have

L =
√
LL∗U .
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Problem. 22. Here V is a finite-dimensional vector space. For a given L ∈
L(V) and a fixed v0 ∈ V, define

P(L, v0) =

{(
a0IV + a1L+ a2L2 + . . . akLk

)
(v0)

∣∣∣∣k ≥ 0, ai ∈ C

}
.

1. Argue that P(L, v0) is a subspace of V.

2. Argue that P(L, v0) is invariant under L.

3. Argue that P(L, v0) is contained in every invariant subspace for L that
contains v0. We refer to P(L, v0) as the cyclic invariant subspace for
L generated by v0.

4. Argue that P(L, v0) is 1-dimensional exactly when v0 is an eigenvector of
L.

5. Argue a subspace W of V is invariant under L exactly when it is a union
of cyclic invariant subspaces for L.
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Problem. 23. Develop (with proof) an extension of the Polar Decomposition
theorem to non-square matrices.
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Problem. 24. Here V is an finite-dimensional inner product space.

1. Prove that every commuting collection in L(V) is simultaneously ortho-
triangularizable.

2. Prove that every commuting collection of diagonalizable linear functions
in L(V) is simultaneously diagonalizable.
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Problem. 25. State and prove Riesz Representation theorem for linear func-
tionals on a finite-dimensional inner product space.
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Problem. 26. Here V is a finite-dimensional vector space. Prove that the
following claims about L ∈ L(V) are equivalent.

1. There is a basis of V comprised entirely the eigenvectors of L.

2. V is a direct sum of all distinct eigenspaces of L.

3. The sum of the dimensions of the distinct eigenspaces of L equals the
dimension of V.

4. L is a linear combination of idempotents that resolve the identity on V.

5. L is a linear combination mutually annihilating idempotents in L(V).

6. If A = [L]Γ←Γ for some basis Γ of V, then A is similar to a diagonal
matrix.

7. The minimal polynomial of L factors into distinct linear factors.



236 CHAPTER 19. PROBLEMS AND SOLUTIONS

Problem. 27. Suppose that V is a finite-dimensional vector space. Prove
that there is a function ψ : V ×V → C which defines an inner product on V.
Loosely speaking, you are proving that every finite-dimensional vector space is
an finite-dimensional inner product space.
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Problem. 28. Here V is a finite-dimensional vector space, and L ∈ L(V).

1. Argue that for each v ∈ V there is a unique monic polynomial pv of
smallest degree such that p(L) annihilates v.

2. Argue that there exists v ∈ V such that pv is the minimal polynomial of
L.



238 CHAPTER 19. PROBLEMS AND SOLUTIONS

Problem. 29. Argue that for each positive semi-definite linear operator L on
an finite-dimensional inner product space V there is a unique positive semi-
definite operator R on V such that

R2 = L.

Note to me (the author): the proof is in Leo’s practice problem for
the final.
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Problem. 30. Here V is a vector space, and L ∈ L(V). Suppose that poly-
nomials p1 and p2 are relatively prime monic polynomials and p1p2 annihilates
L.

1. Prove that

V = ker(p1(L))⊕ ker(p2(L))

and that with respect to this decomposition L has a block form

[
A B
C D

]
,

where p1 annihilates A, and p2 annihilates B.

2. Argue that it we also know that p1p2 is the minimal polynomial of L, then
p1 is the minimal polynomial of A, and p2 is the minimal polynomial of
B.
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Problem. 31. Suppose that the partitioned square matrix[
A B
C D

]
is normal, and has square diagonal blocks. Prove that two of the blocks have
the same Frobenius norm.
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Problem. 32. Suppose that diagonal matrices A and B are similar, and that
4 appears as the diagonal entry of A exactly 6 times. Prove that 4 appears as
the diagonal entry of B exactly 6 times.
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Problem. 33. Here V is a vector space, and L, E ∈ L(V), where E is idempo-
tent.

1. Prove that the following claims are equivalent.

(a) Im(E) is invariant under L.

(b) ELE = LE .

2. Prove that the following claims are equivalent.

(a) Im(E) and ker(E) are invariant under L.

(b) E and L commute.

3. Argue that if V is a direct sum of 12 invariant subspaces of L, then with
respect to this decomposition, L has a block-diagonal form.
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Problem. 34. Suppose that V is a finite-dimensional inner product space, and
L ∈ L(V). Prove that the following claims are equivalent.

1. L is positive semi-definite.

2. L = P2 for some positive semi-definite operator P on V.

3. L =M2 for some self-adjoint operator M on V.

4. L = T ∗T for some operator T on V.

5. L = KK∗ for some operator K on V.

Deduce that for a positive semi-definite L,

Lx = 0 ⇐⇒ 〈Lx, x〉 = 0.
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Problem. 35. Here V is a finite-dimensional vector space, L ∈ L(V).

1. Suppose that V is a direct sum of 12 subspaces, and with respect to
this decomposition, L has a block-upper-triangular form. Argue that the
minimal polynomials of the diagonal blocks of L divide the minimal poly-
nomial of L, and the the minimal polynomial of L divides the product of
the minimal polynomials of the diagonal blocks of L.

2. Suppose that V is a direct sum of 12 subspaces, and with respect to this
decomposition, L has a block-diagonal form. Argue that the minimal
polynomial of L is the least common multiple of the minimal polynomials
of the diagonal blocks of L.
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Problem. 36. Here V is a finite-dimensional inner product space, and v1, v2, . . . , v23 ∈
V. Prove that the Gramian matrix corresponding to v1, v2, . . . , v23 is invertible
if and only if v1, v2, . . . , v23 are linearly independent.
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Problem. 37. Prove that for any (not necessarily square) matrix A, the Frobe-
nius norm of A equals the square root of the sum of the squares of the singular
values of A.
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Problem. 38. An n×n matrix A is said to be power-bounded, if the sequence

‖A‖HS ,
∥∥A2

∥∥
HS
,
∥∥A3

∥∥
HS
, . . .

is bounded. Argue that the following are equivalent for a 7 × 7 Jordan block
Jλ.

1. Jλ is power-bounded.

2. limk→∞
∥∥(Jλ)k

∥∥
HS

= 0.

3. |λ| < 1.
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Problem. 39.

1. Argue that the following claims are equivalent for a square matrix A.

(a) A is normal.

(b) A is unitarily equivalent to a diagonal matrix.

2. Argue that the following claims are equivalent for a square matrix B.

(a) B is unitary.

(b) B is unitarily equivalent to a diagonal matrix with diagonal entries
of modulus 1.

3. Argue that the following claims are equivalent for a square matrix C.

(a) C is self-adjoint.

(b) C is unitarily equivalent to a diagonal matrix with real entries.
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Problem. 40. Here Jλ is a 7× 7 Jordan block. Argue that

lim
k→∞

∥∥(Jk)k
∥∥ 1

k

HS
= |λ|.
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Problem. 41. Suppose that V is a finite-dimensional inner product space, and
L ∈ L(V).

1. Prove that

ker(L∗) = Im⊥(L).

2. Prove that

ker(L∗) = ker(L),

whenever L is normal, and conclude that in this case,

V = Im(L) ⊥© ker(L).
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Problem. 42. Here V is a finite-dimensional inner product space. Prove that
for every subspace W of V, we have

V = W ⊕W⊥.
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Problem. 43. State and prove both forms of the Singular Decomposition the-
orem for square matrices, and then extend the theorem to non-square matrices
(with proof).
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Problem. 44. Extra-credit: Prove that the distance (measured via Frobenius/Hilbert-
Schmidt norm) from a given matrix A ∈ Mn of rank m to the nearest n × n
matrix of rank k (not exceeding m), is the square root of the sum of the squares
of the smallest n− k singular values of A.
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